Julien Simon
commited on
Commit
·
5df9582
1
Parent(s):
e6b2d99
Update README.md
Browse files
README.md
CHANGED
@@ -39,15 +39,28 @@ TBD
|
|
39 |
|
40 |
The model can spot one of the following keywords: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow", "Backward", "Forward", "Follow", "Learn", "Visual".
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
### Training and evaluation data
|
43 |
|
44 |
-
- subset v0.02
|
45 |
- full training set
|
46 |
- full validation set
|
47 |
|
48 |
### Training procedure
|
49 |
|
50 |
-
|
51 |
|
52 |
#### Training hyperparameters
|
53 |
|
|
|
39 |
|
40 |
The model can spot one of the following keywords: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow", "Backward", "Forward", "Follow", "Learn", "Visual".
|
41 |
|
42 |
+
The repository includes sample files that I recorded (WAV, 16Khz sampling rate, mono). The simplest way to use the model is with the ```pipeline``` API:
|
43 |
+
|
44 |
+
```
|
45 |
+
>>> from transformers import pipeline
|
46 |
+
>>> p = pipeline("audio-classification", model="juliensimon/wav2vec2-conformer-rel-pos-large-finetuned-speech-commands")
|
47 |
+
>>> p("up16k.wav")
|
48 |
+
[{'score': 0.7008192539215088, 'label': 'up'}, {'score': 0.04346614331007004, 'label': 'off'}, {'score': 0.029526518657803535, 'label': 'left'}, {'score': 0.02905120886862278, 'label': 'stop'}, {'score': 0.027142534032464027, 'label': 'on'}]
|
49 |
+
>>> p("stop16k.wav")
|
50 |
+
[{'score': 0.6969656944274902, 'label': 'stop'}, {'score': 0.03391443192958832, 'label': 'up'}, {'score': 0.027382319793105125, 'label': 'seven'}, {'score': 0.020835857838392258, 'label': 'five'}, {'score': 0.018051736056804657, 'label': 'down'}]
|
51 |
+
>>> p("marvin16k.wav")
|
52 |
+
[{'score': 0.5276530981063843, 'label': 'marvin'}, {'score': 0.04645705968141556, 'label': 'down'}, {'score': 0.038583893328905106, 'label': 'backward'}, {'score': 0.03578080236911774, 'label': 'wow'}, {'score': 0.03178196772933006, 'label': 'bird'}]
|
53 |
+
```
|
54 |
+
|
55 |
### Training and evaluation data
|
56 |
|
57 |
+
- subset: v0.02
|
58 |
- full training set
|
59 |
- full validation set
|
60 |
|
61 |
### Training procedure
|
62 |
|
63 |
+
The model was fine-tuned on [Amazon SageMaker](https://aws.amazon.com/sagemaker), using an [ml.p3dn.24xlarge](https://aws.amazon.com/fr/ec2/instance-types/p3/) instance (8 NVIDIA V100 GPUs). Total training time for 10 epochs was 4.5 hours.
|
64 |
|
65 |
#### Training hyperparameters
|
66 |
|