base_model: dmis-lab/biobert-v1.1
tags:
- generated_from_trainer
model-index:
- name: BC5CDR_bioBERT_NER
results: []
BC5CDR_bioBERT_NER
This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:
Loss: 0.0808
Seqeval classification report: precision recall f1-score support
Chemical 0.99 0.98 0.98 103336 Disease 0.83 0.88 0.85 6944
micro avg 0.97 0.97 0.97 110280 macro avg 0.91 0.93 0.92 110280
weighted avg 0.98 0.97 0.97 110280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
---|---|---|---|---|
No log | 1.0 | 143 | 0.0903 | precision recall f1-score support |
Chemical 0.98 0.98 0.98 103336
Disease 0.79 0.87 0.83 6944
micro avg 0.97 0.97 0.97 110280 macro avg 0.89 0.92 0.90 110280 weighted avg 0.97 0.97 0.97 110280 | | No log | 2.0 | 286 | 0.0823 | precision recall f1-score support
Chemical 0.99 0.98 0.98 103336
Disease 0.79 0.87 0.83 6944
micro avg 0.97 0.97 0.97 110280 macro avg 0.89 0.92 0.91 110280 weighted avg 0.97 0.97 0.97 110280 | | No log | 3.0 | 429 | 0.0808 | precision recall f1-score support
Chemical 0.99 0.98 0.98 103336
Disease 0.83 0.88 0.85 6944
micro avg 0.97 0.97 0.97 110280 macro avg 0.91 0.93 0.92 110280 weighted avg 0.98 0.97 0.97 110280 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0