metadata
license: mit
datasets:
- b-mc2/sql-create-context
- gretelai/synthetic_text_to_sql
language:
- en
base_model: google-t5/t5-base
metrics:
- exact_match
model-index:
- name: juanfra218/text2sql
results:
- task:
type: text-to-sql
metrics:
- name: exact_match
type: exact_match
value: 0.4326836917562724
- name: bleu
type: bleu
value: 0.6687
tags:
- sql
library_name: transformers
Fine-Tuned Google T5 Model for Text to SQL Translation
A fine-tuned version of the Google T5 model, trained for the task of translating natural language queries into SQL statements.
Model Details
- Architecture: Google T5 Base (Text-to-Text Transfer Transformer)
- Task: Text to SQL Translation
- Fine-Tuning Datasets:
Training Parameters
training_args = Seq2SeqTrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=3,
predict_with_generate=True,
fp16=True,
push_to_hub=False,
)
Usage
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the tokenizer and model
model_path = 'juanfra218/text2sql'
tokenizer = T5Tokenizer.from_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)
model.to(device)
# Function to generate SQL queries
def generate_sql(prompt, schema):
input_text = "translate English to SQL: " + prompt + " " + schema
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True, padding="max_length")
inputs = {key: value.to(device) for key, value in inputs.items()}
max_output_length = 1024
outputs = model.generate(**inputs, max_length=max_output_length)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Interactive loop
print("Enter 'quit' to exit.")
while True:
prompt = input("Insert prompt: ")
schema = input("Insert schema: ")
if prompt.lower() == 'quit':
break
sql_query = generate_sql(prompt, schema)
print(f"Generated SQL query: {sql_query}")
print()
Files
optimizer.pt
: State of the optimizer.training_args.bin
: Training arguments and hyperparameters.tokenizer.json
: Tokenizer vocabulary and settings.spiece.model
: SentencePiece model file.special_tokens_map.json
: Special tokens mapping.tokenizer_config.json
: Tokenizer configuration settings.model.safetensors
: Trained model weights.generation_config.json
: Configuration for text generation.config.json
: Model architecture configuration.test_results.csv
: Results on the testing set, contains: prompt, context, true_answer, predicted_answer, exact_match