juancavallotti's picture
update model card README.md
d145ada
|
raw
history blame
3.33 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
model-index:
  - name: bert_sentence_classifier
    results: []

bert_sentence_classifier

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4207
  • F1: 0.6163
  • Precision: 0.6163
  • Recall: 0.6163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall
1.8231 0.12 500 1.5368 0.5776 0.5776 0.5776
1.5269 0.25 1000 1.4710 0.5935 0.5935 0.5935
1.5059 0.37 1500 1.4287 0.6091 0.6091 0.6091
1.4711 0.5 2000 1.4186 0.6106 0.6106 0.6106
1.4269 0.62 2500 1.4154 0.6106 0.6106 0.6106
1.4392 0.74 3000 1.4029 0.6197 0.6197 0.6197
1.4587 0.87 3500 1.3800 0.6216 0.6216 0.6216
1.4519 0.99 4000 1.3790 0.6231 0.6231 0.6231
1.2645 1.12 4500 1.3879 0.6201 0.6201 0.6201
1.2581 1.24 5000 1.4064 0.6186 0.6186 0.6186
1.2425 1.36 5500 1.4008 0.6220 0.6220 0.6220
1.2581 1.49 6000 1.3839 0.6209 0.6209 0.6209
1.2522 1.61 6500 1.3916 0.6224 0.6224 0.6224
1.2675 1.73 7000 1.3816 0.6194 0.6194 0.6194
1.2697 1.86 7500 1.3960 0.6125 0.6125 0.6125
1.258 1.98 8000 1.3871 0.6220 0.6220 0.6220
1.087 2.11 8500 1.4184 0.6159 0.6159 0.6159
1.0504 2.23 9000 1.4144 0.6201 0.6201 0.6201
1.0649 2.35 9500 1.4304 0.6175 0.6175 0.6175
1.0468 2.48 10000 1.4433 0.6205 0.6205 0.6205
1.0711 2.6 10500 1.4420 0.6099 0.6099 0.6099
1.0684 2.73 11000 1.4280 0.6114 0.6114 0.6114
1.0514 2.85 11500 1.4436 0.6121 0.6121 0.6121
1.0729 2.97 12000 1.4207 0.6163 0.6163 0.6163

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1