jtatman commited on
Commit
19f8c1b
1 Parent(s): 3a6cc99

End of training

Browse files
README.md CHANGED
@@ -1,202 +1,162 @@
1
  ---
2
  base_model: EleutherAI/pythia-160m-deduped
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.11.1
 
 
 
 
 
1
  ---
2
  base_model: EleutherAI/pythia-160m-deduped
3
  library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - axolotl
7
+ - relora
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: pythia-160m-dolphin-extended
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
 
20
+ axolotl version: `0.4.1`
21
+ ```yaml
22
+ base_model: EleutherAI/pythia-160m-deduped
23
+ load_in_8bit:
24
+ datasets:
25
+ - path: lee-ite/med-alpaca
26
+ type: alpaca
27
+ shards: 4
28
+ - path: vicgalle/alpaca-gpt4
29
+ type: alpaca
30
+ - path: iamtarun/python_code_instructions_18k_alpaca
31
+ type: alpaca
32
+ - path: llamafactory/alpaca_gpt4_en
33
+ type: alpaca
34
+ - path: cognitivecomputations/dolphin
35
+ name: flan1m-alpaca-uncensored
36
+ type: alpaca
37
+ shards: 4
38
+
39
+ dataset_prepared_path: ds-mega-alpaca
40
+ #dataset_shard_num: 10
41
+ chat_template: inst
42
+ val_set_size: 0.001
43
+ adapter: lora
44
+ lora_model_dir:
45
+ sequence_len: 2048
46
+ lora_r: 16
47
+ lora_alpha: 32
48
+ lora_dropout: 0.05
49
+ lora_target_modules:
50
+ - query_key_value
51
+ lora_target_linear:
52
+ lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific
53
+ lora_modules_to_save:
54
+ - embed_in
55
+ - embed_out
56
+ - lm_head
57
+ lora_on_cpu: false
58
+ # ReLoRA configuration
59
+ # # Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
60
+ # relora_steps: # Number of steps per ReLoRA restart
61
+ # relora_warmup_steps: # Number of per-restart warmup steps
62
+ # relora_anneal_steps: # Number of anneal steps for each relora cycle
63
+ # relora_prune_ratio: # threshold for optimizer magnitude when pruning
64
+ # relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
65
+ relora_steps: 200
66
+ relora_warmup_steps: 10
67
+ relora_cpu_offload: false
68
+ wandb_project: pythia
69
+ wandb_entity:
70
+ wandb_watch:
71
+ wandb_name: pythia-160m-dolphin-extended
72
+ wandb_log_model:
73
+ output_dir: ./outputs/lora-alpaca-pythia-160m-dolphin-extended
74
+ gradient_accumulation_steps: 16
75
+ micro_batch_size: 1
76
+ num_epochs: 3
77
+ learning_rate: 0.0006
78
+ lr_scheduler: cosine_with_restarts
79
+ #cosine_min_lr_ratio: 0.1
80
+ train_on_inputs: false
81
+ group_by_length: false
82
+ #bf16: auto
83
+ #fp16: true
84
+ #tf32: false
85
+ float16: true
86
+ flash_attn:
87
+ xformers_attention: true
88
+ optimizer: paged_adamw_8bit
89
+ gpu_memory_limit: 8GiB
90
+ hub_model_id: jtatman/pythia-160m-dolphin-extended
91
+ early_stopping_patience: 3
92
+ #resume_from_checkpoint: outputs/lora-alpaca-pythia-125m/checkpoint-51040
93
+ auto_resume_from_checkpoints: true
94
+ local_rank:
95
+ weight_decay: 0.0
96
+ #evals_per_epoch: 4
97
+ eval_steps: 200
98
+ logging_steps: 1
99
+ save_steps: 200
100
+ save_total_limit: 5
101
+ warmup_steps: 100
102
+ tokens:
103
+ - "[INST]"
104
+ - "[/INST]"
105
+
106
+ ```
107
+
108
+ </details><br>
109
+
110
+ # pythia-160m-dolphin-extended
111
+
112
+ This model is a fine-tuned version of [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) on the None dataset.
113
+ It achieves the following results on the evaluation set:
114
+ - Loss: 9.6289
115
+
116
+ ## Model description
117
+
118
+ More information needed
119
+
120
+ ## Intended uses & limitations
121
+
122
+ More information needed
123
+
124
+ ## Training and evaluation data
125
+
126
+ More information needed
127
+
128
+ ## Training procedure
129
+
130
+ ### Training hyperparameters
131
+
132
+ The following hyperparameters were used during training:
133
+ - learning_rate: 0.0006
134
+ - train_batch_size: 1
135
+ - eval_batch_size: 1
136
+ - seed: 42
137
+ - gradient_accumulation_steps: 16
138
+ - total_train_batch_size: 16
139
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
140
+ - lr_scheduler_type: cosine_with_restarts
141
+ - lr_scheduler_warmup_steps: 100
142
+ - num_epochs: 3
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | 38.0524 | 0.0000 | 1 | 33.0385 |
149
+ | 8.859 | 0.0056 | 200 | 8.2423 |
150
+ | 7.2059 | 0.0113 | 400 | 7.4385 |
151
+ | 10.5864 | 0.0169 | 600 | 10.5324 |
152
+ | 10.3914 | 0.0226 | 800 | 10.2817 |
153
+ | 9.5214 | 0.0282 | 1000 | 9.6289 |
154
 
155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  ### Framework versions
157
 
158
+ - PEFT 0.11.1
159
+ - Transformers 4.41.2
160
+ - Pytorch 2.3.0+cu121
161
+ - Datasets 2.19.1
162
+ - Tokenizers 0.19.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2c9ec93d339f33e5448ea7558b80b9ed107ac8e5b451ed1b96cc6225ba3721eb
3
- size 155717368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
config.json CHANGED
@@ -22,7 +22,7 @@
22
  "rotary_emb_base": 10000,
23
  "rotary_pct": 0.25,
24
  "tie_word_embeddings": false,
25
- "torch_dtype": "float16",
26
  "transformers_version": "4.41.2",
27
  "use_cache": false,
28
  "use_parallel_residual": true,
 
22
  "rotary_emb_base": 10000,
23
  "rotary_pct": 0.25,
24
  "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
  "transformers_version": "4.41.2",
27
  "use_cache": false,
28
  "use_parallel_residual": true,
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "do_sample": true,
5
+ "eos_token_id": 0,
6
+ "transformers_version": "4.41.2"
7
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:920545f8c1dfea3d671f7cab15872fb22f8e8ec3785200a96883abcc1275b213
3
+ size 324696090