jsylee commited on
Commit
e151a4f
1 Parent(s): d12001a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -5
README.md CHANGED
@@ -39,20 +39,17 @@ This model classifies input tokens into one of five classes:
39
  To get started using this model for inference, simply set up an NER `pipeline` like below:
40
 
41
  ```python
42
-
43
  from transformers import (AutoModelForTokenClassification,
44
  AutoTokenizer,
45
  pipeline,
46
  )
47
 
48
  model_checkpoint = "jsylee/scibert_scivocab_uncased-finetuned-ner"
49
-
50
- model = AutoModelForTokenClassification.from_pretrained(model_checkpoint,
51
- num_labels=5,
52
  id2label={0: 'O', 1: 'B-DRUG', 2: 'I-DRUG', 3: 'B-AE', 4: 'I-AE'}
53
  )
54
-
55
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
 
56
  model_pipeline = pipeline(task="ner", model=model, tokenizer=tokenizer)
57
 
58
  print( model_pipeline ("Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug."))
 
39
  To get started using this model for inference, simply set up an NER `pipeline` like below:
40
 
41
  ```python
 
42
  from transformers import (AutoModelForTokenClassification,
43
  AutoTokenizer,
44
  pipeline,
45
  )
46
 
47
  model_checkpoint = "jsylee/scibert_scivocab_uncased-finetuned-ner"
48
+ model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=5,
 
 
49
  id2label={0: 'O', 1: 'B-DRUG', 2: 'I-DRUG', 3: 'B-AE', 4: 'I-AE'}
50
  )
 
51
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
52
+
53
  model_pipeline = pipeline(task="ner", model=model, tokenizer=tokenizer)
54
 
55
  print( model_pipeline ("Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug."))