jsl5710's picture
jslai//content/sample_data/best_models//MBERT_uncased_BCEWithLogitsLoss_lora
5c60f12 verified
metadata
library_name: peft
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: MBERT_uncased_BCEWithLogitsLoss_lora
    results: []

MBERT_uncased_BCEWithLogitsLoss_lora

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7029
  • Accuracy: 0.625
  • F1: 0.7666
  • Precision: 0.6976
  • Recall: 0.8508
  • Roc Auc: 0.4417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
No log 0.992 31 0.7117 0.333 0.4007 0.5733 0.3080 0.3533
No log 1.984 62 0.7051 0.584 0.7309 0.6873 0.7804 0.4246
No log 2.976 93 0.7029 0.625 0.7666 0.6976 0.8508 0.4417

Framework versions

  • PEFT 0.13.3.dev0
  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3