jsfs11 commited on
Commit
abf8d9d
1 Parent(s): 12c61e4

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - moe
5
+ - frankenmoe
6
+ - merge
7
+ - mergekit
8
+ - lazymergekit
9
+ - Gille/StrangeMerges_32-7B-slerp
10
+ - mlabonne/AlphaMonarch-7B
11
+ base_model:
12
+ - Gille/StrangeMerges_32-7B-slerp
13
+ - mlabonne/AlphaMonarch-7B
14
+ ---
15
+
16
+ # MixtureofMerges-MoE-2x7b-v7
17
+
18
+ MixtureofMerges-MoE-2x7b-v7 is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
19
+ * [Gille/StrangeMerges_32-7B-slerp](https://huggingface.co/Gille/StrangeMerges_32-7B-slerp)
20
+ * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ base_model: Gille/StrangeMerges_32-7B-slerp
26
+ gate_mode: hidden
27
+ dtype: bfloat16
28
+ experts:
29
+ - source_model: Gille/StrangeMerges_32-7B-slerp
30
+ positive_prompts:
31
+ - "Answer this question from the ARC (Argument Reasoning Comprehension)."
32
+ - "Use common sense and logical reasoning skills."
33
+ - "What assumptions does this argument rely on?"
34
+ - "Are these assumptions valid? Explain."
35
+ - "Analyze the logical structure of this argument. Identify the premises, conclusion, and any assumptions made"
36
+ - "Identify any potential counterarguments to this position. How might someone challenge the reasoning presented?"
37
+ - "Could this be explained in a different way? Provide an alternative explanation."
38
+ - "Identify any weaknesses in this argument."
39
+ - "Does this argument contain any logical fallacies? If so, which ones?"
40
+ - "Generate a few possible continuations to this scenario."
41
+ - "Demonstrate understanding of everyday commonsense in your response."
42
+ - "Use contextual clues to determine the most likely outcome."
43
+ - "Continue this scenario, but make the writing style sound archaic and overly formal."
44
+ - "This narrative is predictable. Can you introduce an unexpected yet plausible twist?"
45
+ - "The character is angry. Continue this scenario showcasing a furious outburst."
46
+ negative_prompts:
47
+ - "misses key evidence"
48
+ - "overly general"
49
+ - "commits the fallacy of hasty generalization"
50
+ - "focuses on irrelevant details"
51
+ - "assumes information not provided"
52
+ - "relies on stereotypes"
53
+ - "repetitive phrases"
54
+ - "engages in circular reasoning"
55
+ - "overuse of the same words"
56
+ - "contradicts earlier statements - breaks the internal logic of the scenario"
57
+ - "out of character dialogue"
58
+ - "awkward phrasing - sounds unnatural"
59
+ - "doesn't match the given genre"
60
+ - source_model: mlabonne/AlphaMonarch-7B
61
+ positive_prompts:
62
+ - "Answer this question, demonstrating commonsense understanding and using any relevant general knowledge you may have."
63
+ - "Provide a concise summary of this passage, then explain why the highlighted section is essential to the main idea."
64
+ - "Read these two brief articles presenting different viewpoints on the same topic. List their key arguments and highlight where they disagree."
65
+ - "Paraphrase this statement, changing the emotional tone but keeping the core meaning intact. Example: Rephrase a worried statement in a humorous way"
66
+ - "Create a short analogy that helps illustrate the main concept of this article."
67
+ - "Explain the concept of physics to a high school student. Use analogies and examples to clarify the main ideas."
68
+ - "Calculate the answer to this math problem"
69
+ - "My mathematical capabilities are strong, allowing me to handle complex mathematical queries"
70
+ - "solve for"
71
+ - "Analyze the given data and identify any patterns or trends. What conclusions can be drawn from this information?"
72
+ - "A store sells apples at $0.50 each. If Emily buys 12 apples, how much does she need to pay?"
73
+ - "Isolate x in the following equation: 2x + 5 = 17"
74
+ - "Solve this equation and show your working."
75
+ - "Explain why you used this formula to solve the problem."
76
+ - "Attempt to divide this number by zero. Explain why this cannot be done."
77
+ negative_prompts:
78
+ - "sounds too basic"
79
+ - "understated"
80
+ - "dismisses important details"
81
+ - "avoids the question's nuance"
82
+ - "skips essential steps in the solution"
83
+ - "takes this statement too literally"
84
+ - "incorrect"
85
+ - "inaccurate"
86
+ - "assumed without proof"
87
+ - "uses jargon without explanation"
88
+ - "rushed calculation"
89
+ - "confuses mathematical concepts"
90
+ - "draws illogical conclusions"
91
+ - "circular reasoning"
92
+ ```
93
+
94
+ ## 💻 Usage
95
+
96
+ ```python
97
+ !pip install -qU transformers bitsandbytes accelerate
98
+
99
+ from transformers import AutoTokenizer
100
+ import transformers
101
+ import torch
102
+
103
+ model = "jsfs11/MixtureofMerges-MoE-2x7b-v7"
104
+
105
+ tokenizer = AutoTokenizer.from_pretrained(model)
106
+ pipeline = transformers.pipeline(
107
+ "text-generation",
108
+ model=model,
109
+ model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
110
+ )
111
+
112
+ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
113
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
114
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
115
+ print(outputs[0]["generated_text"])
116
+ ```
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Gille/StrangeMerges_32-7B-slerp",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mixtral",
15
+ "num_attention_heads": 32,
16
+ "num_experts_per_tok": 2,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "num_local_experts": 2,
20
+ "output_router_logits": false,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_theta": 10000.0,
23
+ "router_aux_loss_coef": 0.001,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.39.2",
28
+ "use_cache": true,
29
+ "vocab_size": 32000
30
+ }
mergekit_moe_config.yml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ base_model: Gille/StrangeMerges_32-7B-slerp
3
+ gate_mode: hidden
4
+ dtype: bfloat16
5
+ experts:
6
+ - source_model: Gille/StrangeMerges_32-7B-slerp
7
+ positive_prompts:
8
+ - "Answer this question from the ARC (Argument Reasoning Comprehension)."
9
+ - "Use common sense and logical reasoning skills."
10
+ - "What assumptions does this argument rely on?"
11
+ - "Are these assumptions valid? Explain."
12
+ - "Analyze the logical structure of this argument. Identify the premises, conclusion, and any assumptions made"
13
+ - "Identify any potential counterarguments to this position. How might someone challenge the reasoning presented?"
14
+ - "Could this be explained in a different way? Provide an alternative explanation."
15
+ - "Identify any weaknesses in this argument."
16
+ - "Does this argument contain any logical fallacies? If so, which ones?"
17
+ - "Generate a few possible continuations to this scenario."
18
+ - "Demonstrate understanding of everyday commonsense in your response."
19
+ - "Use contextual clues to determine the most likely outcome."
20
+ - "Continue this scenario, but make the writing style sound archaic and overly formal."
21
+ - "This narrative is predictable. Can you introduce an unexpected yet plausible twist?"
22
+ - "The character is angry. Continue this scenario showcasing a furious outburst."
23
+ negative_prompts:
24
+ - "misses key evidence"
25
+ - "overly general"
26
+ - "commits the fallacy of hasty generalization"
27
+ - "focuses on irrelevant details"
28
+ - "assumes information not provided"
29
+ - "relies on stereotypes"
30
+ - "repetitive phrases"
31
+ - "engages in circular reasoning"
32
+ - "overuse of the same words"
33
+ - "contradicts earlier statements - breaks the internal logic of the scenario"
34
+ - "out of character dialogue"
35
+ - "awkward phrasing - sounds unnatural"
36
+ - "doesn't match the given genre"
37
+ - source_model: mlabonne/AlphaMonarch-7B
38
+ positive_prompts:
39
+ - "Answer this question, demonstrating commonsense understanding and using any relevant general knowledge you may have."
40
+ - "Provide a concise summary of this passage, then explain why the highlighted section is essential to the main idea."
41
+ - "Read these two brief articles presenting different viewpoints on the same topic. List their key arguments and highlight where they disagree."
42
+ - "Paraphrase this statement, changing the emotional tone but keeping the core meaning intact. Example: Rephrase a worried statement in a humorous way"
43
+ - "Create a short analogy that helps illustrate the main concept of this article."
44
+ - "Explain the concept of physics to a high school student. Use analogies and examples to clarify the main ideas."
45
+ - "Calculate the answer to this math problem"
46
+ - "My mathematical capabilities are strong, allowing me to handle complex mathematical queries"
47
+ - "solve for"
48
+ - "Analyze the given data and identify any patterns or trends. What conclusions can be drawn from this information?"
49
+ - "A store sells apples at $0.50 each. If Emily buys 12 apples, how much does she need to pay?"
50
+ - "Isolate x in the following equation: 2x + 5 = 17"
51
+ - "Solve this equation and show your working."
52
+ - "Explain why you used this formula to solve the problem."
53
+ - "Attempt to divide this number by zero. Explain why this cannot be done."
54
+ negative_prompts:
55
+ - "sounds too basic"
56
+ - "understated"
57
+ - "dismisses important details"
58
+ - "avoids the question's nuance"
59
+ - "skips essential steps in the solution"
60
+ - "takes this statement too literally"
61
+ - "incorrect"
62
+ - "inaccurate"
63
+ - "assumed without proof"
64
+ - "uses jargon without explanation"
65
+ - "rushed calculation"
66
+ - "confuses mathematical concepts"
67
+ - "draws illogical conclusions"
68
+ - "circular reasoning"
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2209de631aa3ad8430dc737b72b71f0b1186c002b35c256a2585e0dadba25c18
3
+ size 9919813704
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78b35aa7e3a8a27a2c563b3199027feea30e7f5dbdd913d16b9ee9d585f0a2c7
3
+ size 9982454736
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f21edc624e1fb09172cb452818edd997ebb8d5dba99093cd197babc56ab592af
3
+ size 5856061008
model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"mergekit_version": "0.0.4"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00003.safetensors", "model.norm.weight": "model-00001-of-00003.safetensors", "lm_head.weight": "model-00001-of-00003.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.15.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.16.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.17.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.18.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.19.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.20.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.21.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.22.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.23.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.24.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.25.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.26.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.27.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.28.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.29.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.30.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.31.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.12.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.13.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.14.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.15.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.16.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.17.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.18.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.19.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.20.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.21.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.22.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.23.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.24.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.25.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.26.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.27.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.28.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.29.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.30.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.31.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors"}}
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 32768,
36
+ "pad_token": "<s>",
37
+ "padding_side": "left",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }