jscore2023
commited on
Commit
•
bb2d6e6
1
Parent(s):
d9f293e
Delete configuration_falcon.py
Browse files- configuration_falcon.py +0 -147
configuration_falcon.py
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" Falcon configuration"""
|
16 |
-
from transformers.configuration_utils import PretrainedConfig
|
17 |
-
from transformers.utils import logging
|
18 |
-
|
19 |
-
|
20 |
-
logger = logging.get_logger(__name__)
|
21 |
-
|
22 |
-
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
-
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
24 |
-
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
25 |
-
}
|
26 |
-
|
27 |
-
|
28 |
-
class FalconConfig(PretrainedConfig):
|
29 |
-
r"""
|
30 |
-
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
31 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
-
defaults will yield a similar configuration to that of the
|
33 |
-
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
34 |
-
|
35 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
-
documentation from [`PretrainedConfig`] for more information.
|
37 |
-
|
38 |
-
|
39 |
-
Args:
|
40 |
-
vocab_size (`int`, *optional*, defaults to 65024):
|
41 |
-
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
42 |
-
`inputs_ids` passed when calling [`FalconModel`]
|
43 |
-
hidden_size (`int`, *optional*, defaults to 4544):
|
44 |
-
Dimension of the hidden representations.
|
45 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
-
Number of hidden layers in the Transformer decoder.
|
47 |
-
num_attention_heads (`int`, *optional*, defaults to 71):
|
48 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
50 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
51 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
52 |
-
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
53 |
-
`config.is_decoder=True`.
|
54 |
-
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
55 |
-
The epsilon used by the layer normalization layers.
|
56 |
-
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
57 |
-
The dropout probability for MLP layers.
|
58 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
-
The dropout probability for attention layers.
|
60 |
-
num_kv_heads (`int`, *optional*):
|
61 |
-
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
62 |
-
`num_attention_heads`.
|
63 |
-
alibi (`bool`, *optional*, defaults to `False`):
|
64 |
-
Whether to use ALiBi positional biases during self-attention.
|
65 |
-
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
66 |
-
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
67 |
-
arguments are ignored, as the new decoder always uses parallel attention.
|
68 |
-
multi_query (`bool`, *optional*, defaults to `True`):
|
69 |
-
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
70 |
-
parallel_attn (`bool`, *optional*, defaults to `True`):
|
71 |
-
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
72 |
-
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
73 |
-
bias (`bool`, *optional*, defaults to `False`):
|
74 |
-
Whether to use bias on Linear layers.
|
75 |
-
bos_token_id (`int`, *optional*, defaults to 11):
|
76 |
-
The id of the "beginning-of-sequence" token.
|
77 |
-
eos_token_id (`int`, *optional*, defaults to 11):
|
78 |
-
The id of the "end-of-sequence" token.
|
79 |
-
|
80 |
-
Example:
|
81 |
-
|
82 |
-
```python
|
83 |
-
>>> from transformers import FalconModel, FalconConfig
|
84 |
-
|
85 |
-
>>> # Initializing a small (2-layer) Falcon configuration
|
86 |
-
>>> configuration = FalconConfig(num_hidden_layers=2)
|
87 |
-
|
88 |
-
>>> # Initializing a model from the small configuration
|
89 |
-
>>> model = FalconModel(configuration)
|
90 |
-
|
91 |
-
>>> # Accessing the model configuration
|
92 |
-
>>> configuration = model.config
|
93 |
-
```"""
|
94 |
-
model_type = "falcon"
|
95 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
96 |
-
|
97 |
-
def __init__(
|
98 |
-
self,
|
99 |
-
vocab_size=65024,
|
100 |
-
hidden_size=4544,
|
101 |
-
num_hidden_layers=32,
|
102 |
-
num_attention_heads=71,
|
103 |
-
layer_norm_epsilon=1e-5,
|
104 |
-
initializer_range=0.02,
|
105 |
-
use_cache=True,
|
106 |
-
hidden_dropout=0.0,
|
107 |
-
attention_dropout=0.0,
|
108 |
-
num_kv_heads=None,
|
109 |
-
alibi=False,
|
110 |
-
new_decoder_architecture=False,
|
111 |
-
multi_query=True,
|
112 |
-
parallel_attn=True,
|
113 |
-
bias=False,
|
114 |
-
bos_token_id=11,
|
115 |
-
eos_token_id=11,
|
116 |
-
**kwargs,
|
117 |
-
):
|
118 |
-
self.vocab_size = vocab_size
|
119 |
-
# Backward compatibility with n_embed kwarg
|
120 |
-
n_embed = kwargs.pop("n_embed", None)
|
121 |
-
self.hidden_size = hidden_size if n_embed is None else n_embed
|
122 |
-
self.num_hidden_layers = num_hidden_layers
|
123 |
-
self.num_attention_heads = num_attention_heads
|
124 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
125 |
-
self.initializer_range = initializer_range
|
126 |
-
self.use_cache = use_cache
|
127 |
-
self.hidden_dropout = hidden_dropout
|
128 |
-
self.attention_dropout = attention_dropout
|
129 |
-
|
130 |
-
self.bos_token_id = bos_token_id
|
131 |
-
self.eos_token_id = eos_token_id
|
132 |
-
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
133 |
-
self.alibi = alibi
|
134 |
-
self.new_decoder_architecture = new_decoder_architecture
|
135 |
-
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
136 |
-
self.parallel_attn = parallel_attn
|
137 |
-
self.bias = bias
|
138 |
-
|
139 |
-
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
140 |
-
|
141 |
-
@property
|
142 |
-
def head_dim(self):
|
143 |
-
return self.hidden_size // self.num_attention_heads
|
144 |
-
|
145 |
-
@property
|
146 |
-
def rotary(self):
|
147 |
-
return not self.alibi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|