pep_summarization / README.md
jpodivin's picture
End of training
4747369 verified
|
raw
history blame
2.23 kB
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
datasets:
- fedora-copr/pep-sum
metrics:
- rouge
model-index:
- name: pep_summarization
results:
- task:
name: Summarization
type: summarization
dataset:
name: fedora-copr/pep-sum
type: fedora-copr/pep-sum
metrics:
- name: Rouge1
type: rouge
value: 75.3806
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pep_summarization
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the fedora-copr/pep-sum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1242
- Rouge1: 75.3806
- Rouge2: 74.6735
- Rougel: 75.5866
- Rougelsum: 75.5446
- Gen Len: 85.3188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 69 | 0.0957 | 72.6601 | 71.6824 | 72.6858 | 72.4668 | 95.4493 |
| No log | 2.0 | 138 | 0.1345 | 75.0063 | 74.0782 | 75.0597 | 74.8943 | 92.0145 |
| No log | 3.0 | 207 | 0.1412 | 75.3012 | 74.5492 | 75.4246 | 75.324 | 85.4638 |
| No log | 4.0 | 276 | 0.1089 | 74.8426 | 74.0317 | 74.8939 | 74.8128 | 85.0435 |
| No log | 5.0 | 345 | 0.1242 | 75.3806 | 74.6735 | 75.5866 | 75.5446 | 85.3188 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0