|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
import copy |
|
from typing import Any, Dict, Optional, Tuple |
|
from dataclasses import dataclass, field |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from einops import rearrange |
|
from transformers.activations import ACT2FN |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_mixformer_sequential import MixFormerSequentialConfig |
|
|
|
@dataclass |
|
class InferenceParams: |
|
"""Inference parameters that are passed to the main model in order |
|
to efficienly calculate and store the context during inference. |
|
Adapted from https://github.com/Dao-AILab/flash-attention.""" |
|
max_sequence_len: int |
|
max_batch_size: int |
|
sequence_len_offset: int = 0 |
|
batch_size_offset: int = 0 |
|
key_value_memory_dict: dict = field(default_factory=dict) |
|
fused_ft_kernel: bool = False |
|
lengths_per_sample: Optional[torch.Tensor] = None |
|
|
|
|
|
class Embedding(nn.Module): |
|
"""Token embedding with dropout.""" |
|
|
|
def __init__(self, config: PretrainedConfig) -> None: |
|
super().__init__() |
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
|
|
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
hidden_states = self.wte(input_ids) |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|
|
class RotaryEmbedding(nn.Module): |
|
"""PyTorch implementation of `flash-attn` RotaryEmbedding layer. |
|
Adapted from https://github.com/Dao-AILab/flash-attention.""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
base: Optional[int] = 10000, |
|
scale_base: Optional[float] = None, |
|
device: Optional[str] = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
|
|
if scale_base is not None: |
|
raise NotImplementedError |
|
|
|
|
|
self.dim = dim |
|
self.base = base |
|
self.scale_base = scale_base |
|
self.device = device |
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
scale = ( |
|
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) |
|
if scale_base is not None |
|
else None |
|
) |
|
self.register_buffer("scale", scale) |
|
|
|
self._seq_len_cached = 0 |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
self._cos_k_cached = None |
|
self._sin_k_cached = None |
|
|
|
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0) -> None: |
|
|
|
|
|
seqlen = x.shape[1] + seqlen_offset |
|
|
|
|
|
|
|
if self.inv_freq.dtype != "torch.float32": |
|
self.inv_freq = 1.0 / ( |
|
self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim) |
|
) |
|
|
|
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype: |
|
self._seq_len_cached = seqlen |
|
t = torch.arange(seqlen, device=x.device, dtype=torch.float32) |
|
|
|
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32)) |
|
if self.scale is None: |
|
self._cos_cached = torch.cos(freqs).to(x.dtype) |
|
self._sin_cached = torch.sin(freqs).to(x.dtype) |
|
else: |
|
power = ( |
|
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 |
|
) / self.scale_base |
|
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") |
|
|
|
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype) |
|
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype) |
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype) |
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype) |
|
|
|
def apply_rotary_emb_qkv( |
|
self, |
|
qkv: torch.FloatTensor, |
|
sin: torch.FloatTensor, |
|
cos: torch.FloatTensor, |
|
sin_k: Optional[torch.FloatTensor] = None, |
|
cos_k: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
_, seqlen, three, _, headdim = qkv.shape |
|
assert three == 3 |
|
|
|
rotary_seqlen, rotary_dim = cos.shape |
|
rotary_dim *= 2 |
|
assert rotary_dim <= headdim |
|
assert seqlen <= rotary_seqlen |
|
|
|
cos_k = cos if cos_k is None else cos_k |
|
sin_k = sin if sin_k is None else sin_k |
|
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2) |
|
|
|
q_rot = qkv[:, :, 0, :, :rotary_dim] |
|
q_pass = qkv[:, :, 0, :, rotary_dim:] |
|
|
|
k_rot = qkv[:, :, 1, :, :rotary_dim] |
|
k_pass = qkv[:, :, 1, :, rotary_dim:] |
|
|
|
|
|
q1, q2 = q_rot.chunk(2, dim=-1) |
|
k1, k2 = k_rot.chunk(2, dim=-1) |
|
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") |
|
|
|
|
|
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]] |
|
|
|
|
|
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype) |
|
|
|
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype) |
|
|
|
return torch.cat( |
|
[ |
|
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2), |
|
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), |
|
qkv[:, :, 2:3, :, :], |
|
], |
|
axis=2, |
|
) |
|
|
|
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Perform the forward pass. |
|
|
|
Args: |
|
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim). |
|
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch. |
|
|
|
Returns: |
|
New `qkv` and the cached sinusoids. |
|
|
|
""" |
|
|
|
self._update_cos_sin_cache(qkv, seqlen_offset) |
|
|
|
return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:]) |
|
|
|
def _update_kv_cache(kv, inference_params, layer_idx): |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim) |
|
Adapted from https://github.com/Dao-AILab/flash-attention.""" |
|
|
|
num_heads, head_dim = kv.shape[-2:] |
|
if layer_idx not in inference_params.key_value_memory_dict: |
|
kv_cache = torch.empty( |
|
inference_params.max_batch_size, inference_params.max_sequence_len, 2, |
|
num_heads, head_dim, dtype=kv.dtype, device=kv.device |
|
) |
|
inference_params.key_value_memory_dict[layer_idx] = kv_cache |
|
else: |
|
kv_cache = inference_params.key_value_memory_dict[layer_idx] |
|
|
|
|
|
batch_start = inference_params.batch_size_offset |
|
batch_end = batch_start + kv.shape[0] |
|
sequence_start = inference_params.sequence_len_offset |
|
sequence_end = sequence_start + kv.shape[1] |
|
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0]) |
|
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2]) |
|
|
|
assert kv_cache is not None |
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv |
|
kv = kv_cache[batch_start:batch_end, :sequence_end, ...] |
|
return kv |
|
|
|
|
|
class MLP(nn.Module): |
|
"""Multi-Layer Perceptron. |
|
|
|
Reference: |
|
Attention Is All You Need. |
|
https://arxiv.org/pdf/1706.03762.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None: |
|
super().__init__() |
|
|
|
act_fn = config.activation_function if act_fn is None else act_fn |
|
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}." |
|
|
|
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner |
|
n_inner = n_inner if n_inner is not None else 4 * config.n_embd |
|
|
|
self.fc1 = nn.Linear(config.n_embd, n_inner) |
|
self.fc2 = nn.Linear(n_inner, config.n_embd) |
|
self.act = ACT2FN[act_fn] |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"] |
|
new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"] |
|
|
|
if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys): |
|
|
|
for old_key, new_key in zip(old_keys, new_keys): |
|
state_dict[new_key] = state_dict.pop(old_key) |
|
|
|
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class FusedMLP(nn.Module): |
|
"""Fused Multi-Layer Perceptron from `flash-attn`. |
|
|
|
Reference: |
|
https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py. |
|
|
|
""" |
|
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None, |
|
raise_on_missing: bool = False) -> None: |
|
super().__init__() |
|
|
|
act_fn = config.activation_function if act_fn is None else act_fn |
|
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}." |
|
|
|
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner |
|
n_inner = n_inner if n_inner is not None else 4 * config.n_embd |
|
|
|
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"] |
|
activation = "gelu_approx" if act_fn in gelu_activations else "relu" |
|
|
|
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
return self.mlp(hidden_states) |
|
|
|
class SelfAttention(nn.Module): |
|
"""Implement the scaled dot product attention with softmax. |
|
Adapted from https://github.com/Dao-AILab/flash-attention. |
|
Arguments |
|
--------- |
|
softmax_scale: The temperature to use for the softmax attention. |
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
runtime) |
|
attention_dropout: The dropout rate to apply to the attention |
|
(default: 0.0) |
|
""" |
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): |
|
super().__init__() |
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.drop = nn.Dropout(attention_dropout) |
|
|
|
def forward(self, qkv, causal=None, key_padding_mask=None): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) |
|
causal: if passed, will override self.causal |
|
key_padding_mask: boolean mask to apply to the attention weights. True means to keep, |
|
False means to mask out. (B, S) |
|
""" |
|
batch_size, seqlen = qkv.shape[0], qkv.shape[1] |
|
causal = self.causal if causal is None else causal |
|
q, k, v = qkv.unbind(dim=2) |
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) |
|
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) |
|
if key_padding_mask is not None: |
|
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, |
|
device=scores.device) |
|
padding_mask.masked_fill_(key_padding_mask, 0.0) |
|
|
|
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s') |
|
if causal: |
|
|
|
|
|
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) |
|
|
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype) |
|
attention_drop = self.drop(attention) |
|
output = torch.einsum('bhts,bshd->bthd', attention_drop, v) |
|
return output |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
"""Implement the scaled dot product attention with softmax. |
|
Adapted from https://github.com/Dao-AILab/flash-attention. |
|
Arguments |
|
--------- |
|
softmax_scale: The temperature to use for the softmax attention. |
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
runtime) |
|
attention_dropout: The dropout rate to apply to the attention |
|
(default: 0.0) |
|
""" |
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): |
|
super().__init__() |
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.drop = nn.Dropout(attention_dropout) |
|
|
|
def forward(self, q, kv, causal=None, key_padding_mask=None): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
q: The tensor containing the query. (B, Sq, H, D) |
|
kv: The tensor containing the key and value. (B, Sk, 2, H, D) |
|
causal: if passed, will override self.causal |
|
key_padding_mask: boolean mask to apply to the attention weights. True means to keep, |
|
False means to mask out. (B, Sk) |
|
""" |
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
causal = self.causal if causal is None else causal |
|
seqlen_k = kv.shape[1] |
|
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3] |
|
k, v = kv.unbind(dim=2) |
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) |
|
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) |
|
if key_padding_mask is not None: |
|
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, |
|
device=scores.device) |
|
padding_mask.masked_fill_(key_padding_mask, 0.0) |
|
|
|
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s') |
|
if causal: |
|
|
|
|
|
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0, |
|
device=scores.device), 1) |
|
|
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
attention = torch.softmax(scores, dim=-1, dtype=v.dtype) |
|
attention_drop = self.drop(attention) |
|
output = torch.einsum('bhts,bshd->bthd', attention_drop, v) |
|
return output |
|
|
|
def find_mha_dims( |
|
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None |
|
) -> Tuple[int, int]: |
|
"""Validate and return the number of heads and head dimension for multi-head attention. |
|
|
|
Args: |
|
config: Model configuration. |
|
n_head: Number of heads. |
|
head_dim: Head dimension. |
|
|
|
Returns: |
|
Number of heads and head dimension. |
|
|
|
""" |
|
|
|
assert all( |
|
hasattr(config, attr) for attr in ["n_embd", "n_head"] |
|
), "`config` must have `n_embd` and `n_head` attributes." |
|
|
|
if head_dim is None: |
|
assert ( |
|
config.n_embd % config.n_head == 0 |
|
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})." |
|
|
|
if n_head is None and head_dim is None: |
|
head_dim = config.n_embd // config.n_head |
|
n_head = config.n_head |
|
elif n_head is None or head_dim is None: |
|
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") |
|
|
|
return n_head, head_dim |
|
|
|
|
|
class MHA(nn.Module): |
|
"""Multi-head attention layer. |
|
Adapted from https://github.com/Dao-AILab/flash-attention.""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
rotary_dim: Optional[int] = None, |
|
n_head: Optional[int] = None, |
|
head_dim: Optional[int] = None, |
|
bias: Optional[bool] = True, |
|
dropout: Optional[float] = 0.0, |
|
softmax_scale: Optional[float] = None, |
|
causal: Optional[bool] = True, |
|
layer_idx: Optional[int] = None, |
|
rotary_emb_scale_base: Optional[float] = None, |
|
return_residual: Optional[bool] = False, |
|
checkpointing: Optional[bool] = False, |
|
device: Optional[str] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
fused_dense: Optional[bool] = True, |
|
flash_attn: Optional[bool] = True, |
|
cutlass_attn: Optional[bool] = False, |
|
flash_rotary: Optional[bool] = True, |
|
raise_on_missing: Optional[bool] = False |
|
) -> None: |
|
super().__init__() |
|
|
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
n_head, head_dim = find_mha_dims(config, n_head, head_dim) |
|
|
|
self.hidden_size = config.n_embd |
|
self.n_head = n_head |
|
self.head_dim = head_dim |
|
self.op_size = n_head * head_dim |
|
|
|
self.causal = causal |
|
self.layer_idx = layer_idx |
|
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0) |
|
self.fused_dense = fused_dense |
|
self.flash_attn = flash_attn |
|
self.cutlass_attn = cutlass_attn |
|
self.flash_rotary = flash_rotary |
|
self.return_residual = return_residual |
|
self.checkpointing = checkpointing |
|
|
|
if self.rotary_emb_dim > 0: |
|
rotary_kwargs = {"device": device} |
|
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0: |
|
rotary_kwargs["scale_base"] = rotary_emb_scale_base |
|
|
|
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs) |
|
else: |
|
pass |
|
|
|
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs) |
|
self.out_proj = nn.Linear(self.op_size, self.hidden_size, bias=bias, **factory_kwargs) |
|
|
|
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) |
|
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) |
|
|
|
def _update_kv_cache(self, kv: torch.FloatTensor, inference_params: InferenceParams) -> None: |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim) |
|
Adapted from https://github.com/Dao-AILab/flash-attention.""" |
|
|
|
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" |
|
|
|
return _update_kv_cache(kv, inference_params, self.layer_idx) |
|
|
|
def forward( |
|
self, |
|
x: torch.FloatTensor, |
|
x_kv: Optional[torch.FloatTensor] = None, |
|
key_padding_mask: Optional[torch.BoolTensor] = None, |
|
cu_seqlens: Optional[torch.LongTensor] = None, |
|
max_seqlen: Optional[int] = None, |
|
mixer_subset: Optional[torch.LongTensor] = None, |
|
past_cache: Optional[InferenceParams] = None, |
|
**kwargs |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
"""Perform the forward pass. |
|
|
|
Args: |
|
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if |
|
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total |
|
is the is the sum of the sequence lengths in the batch. |
|
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x. |
|
key_padding_mask: boolean mask, True means to keep, False means to mask out. |
|
(batch, seqlen). Only applicable when not using FlashAttention. |
|
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths |
|
of the sequences in the batch, used to index into x. Only applicable when using |
|
FlashAttention. |
|
max_seqlen: int. Maximum sequence length in the batch. |
|
mixer_subset: for cross-attention only. If not None, will take a subset of x |
|
before applying the query projection. Useful for e.g., ViT where we only care |
|
about the CLS token in the last layer. |
|
past_cache: For generation only. |
|
|
|
Returns: |
|
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None, |
|
else (total, hidden_dim) where total is the is the sum of the sequence lengths |
|
in the batch. |
|
|
|
""" |
|
|
|
if cu_seqlens is not None: |
|
assert max_seqlen is not None |
|
assert key_padding_mask is None |
|
assert self.flash_attn |
|
assert self.rotary_emb_dim == 0 |
|
|
|
if key_padding_mask is not None: |
|
assert cu_seqlens is None |
|
assert max_seqlen is None |
|
assert not self.flash_attn |
|
|
|
if past_cache is not None: |
|
assert key_padding_mask is None |
|
assert cu_seqlens is None and max_seqlen is None |
|
|
|
attn_kwargs = {"key_padding_mask": key_padding_mask} |
|
|
|
assert x_kv is None and mixer_subset is None |
|
|
|
qkv = self.Wqkv(x) |
|
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) |
|
|
|
if past_cache is None: |
|
if self.rotary_emb_dim > 0: |
|
qkv = self.rotary_emb(qkv) |
|
context = self.inner_attn(qkv, **attn_kwargs) |
|
|
|
else: |
|
if self.rotary_emb_dim > 0: |
|
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset) |
|
q = qkv[:, :, 0] |
|
kv = self._update_kv_cache(qkv[:, :, 1:], past_cache) |
|
|
|
|
|
causal = None if past_cache.sequence_len_offset == 0 else False |
|
context = self.inner_cross_attn(q, kv, causal=causal) |
|
|
|
out = rearrange(context, "... h d -> ... (h d)") |
|
out = self.out_proj(out) |
|
|
|
return out if not self.return_residual else (out, x) |
|
|
|
class ParallelBlock(nn.Module): |
|
"""Parallel block. |
|
|
|
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
mixer: Optional[Dict[str, Any]] = None, |
|
mlp: Optional[Dict[str, Any]] = None, |
|
block_idx: Optional[int] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
self.block_idx = block_idx |
|
|
|
self.mixer = MHA(config=config, **mixer, layer_idx=block_idx) |
|
mlp_cls = mlp.pop('mlp_cls') |
|
if mlp_cls == 'fused_mlp': |
|
self.mlp = FusedMLP(config=config, **mlp) |
|
else: |
|
self.mlp = MLP(config=config, **mlp) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, |
|
past_cache: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: |
|
residual = hidden_states |
|
hidden_states = self.ln(hidden_states) |
|
|
|
attn_outputs = self.mixer(hidden_states, past_cache=past_cache) |
|
if isinstance(attn_outputs, tuple): |
|
attn_outputs = attn_outputs[0] |
|
|
|
attn_outputs = self.resid_dropout(attn_outputs) |
|
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) |
|
|
|
hidden_states = attn_outputs + feed_forward_hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
class CausalLMHead(nn.Module): |
|
"""Causal Language Modeling head. |
|
|
|
Reference: |
|
Improving Language Understanding by Generative Pre-Training. |
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, config: PretrainedConfig) -> None: |
|
super().__init__() |
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.linear = nn.Linear(config.n_embd, config.vocab_size) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
hidden_states = self.ln(hidden_states) |
|
logits = self.linear(hidden_states).to(torch.float32) |
|
|
|
return logits |
|
|
|
|
|
class CausalLMLoss(nn.Module): |
|
"""Causal Language Modeling loss. |
|
|
|
Reference: |
|
Improving Language Understanding by Generative Pre-Training. |
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, shift_labels: Optional[bool] = True) -> None: |
|
super().__init__() |
|
|
|
self.shift_labels = shift_labels |
|
self.loss_fct = nn.CrossEntropyLoss() |
|
|
|
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor: |
|
if self.shift_labels: |
|
logits = logits[..., :-1, :].contiguous() |
|
labels = labels[..., 1:].contiguous() |
|
|
|
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
return loss |
|
|
|
class MixFormerSequentialPreTrainedModel(PreTrainedModel): |
|
"""MixFormer (sequential for DeepSpeed) pre-trained model.""" |
|
|
|
config_class = MixFormerSequentialConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, *inputs, **kwargs) -> None: |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs) -> Dict[str, Any]: |
|
if "use_cache" in kwargs and not kwargs["use_cache"]: |
|
return {"input_ids": input_ids} |
|
|
|
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)): |
|
past_key_values = InferenceParams( |
|
max_batch_size=input_ids.shape[0], |
|
max_sequence_len=self.config.n_positions, |
|
sequence_len_offset=0, |
|
batch_size_offset=0, |
|
fused_ft_kernel=False, |
|
key_value_memory_dict={}, |
|
) |
|
else: |
|
|
|
past_key_values.sequence_len_offset = len(input_ids[0]) - 1 |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs} |
|
|
|
|
|
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel): |
|
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling.""" |
|
|
|
_keys_to_ignore_on_load_missing = [""] |
|
_keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] |
|
|
|
def __init__(self, config: MixFormerSequentialConfig) -> None: |
|
super().__init__(config) |
|
|
|
modules = [Embedding(config)] |
|
block_config = config.architecture |
|
|
|
if not isinstance(block_config, list): |
|
block_config = [block_config for _ in range(config.n_layer)] |
|
|
|
if config.n_layer != len(block_config): |
|
config.n_layer = len(block_config) |
|
|
|
for block_idx, block in enumerate(block_config): |
|
|
|
|
|
block = copy.deepcopy(block) or {"block_cls": "parallel"} |
|
block_cls = block.pop("path", None) or block.pop("block_cls", None) |
|
|
|
block["block_idx"] = block_idx |
|
modules.append(ParallelBlock(config, **block)) |
|
|
|
modules.append(CausalLMHead(config)) |
|
|
|
self.layers = nn.Sequential(*modules) |
|
self.loss = CausalLMLoss() |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.layers[0].wte |
|
|
|
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: |
|
self.layers[0].wte = new_embeddings |
|
|
|
def get_output_embeddings(self) -> nn.Linear: |
|
return self.layers[-1].linear |
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: |
|
self.layers[-1].linear = new_embeddings |
|
|
|
def forward( |
|
self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[torch.FloatTensor] = None, **kwargs |
|
) -> CausalLMOutputWithPast: |
|
|
|
if not past_key_values: |
|
lm_logits = self.layers(input_ids) |
|
else: |
|
hidden_layer = self.layers[0](input_ids) |
|
for module in self.layers[1:-1]: |
|
hidden_layer = module(hidden_layer, past_cache=past_key_values) |
|
lm_logits = self.layers[-1](hidden_layer) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss(lm_logits, labels) |
|
|
|
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values) |
|
|