|
--- |
|
license: mit |
|
language: |
|
- de |
|
--- |
|
# German text simplification with custom decoder |
|
This model was initialized from an mBART model and the decoder was replaced by a GPT2 language model pre-trained for German Easy Language. For more details, visit our [Github repository](https://github.com/MiriUll/Language-Models-German-Simplification). |
|
|
|
## Usage |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from transformers import AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("josh-oo/custom-decoder-ats") |
|
|
|
##gerpt |
|
|
|
#model = AutoModelForSeq2SeqLM.from_pretrained("josh-oo/custom-decoder-ats", trust_remote_code=True, revision="35197269f0235992fcc6b8363ca4f48558b624ff") |
|
#decoder_tokenizer = AutoTokenizer.from_pretrained("josh-oo/gerpt2") |
|
|
|
##dbmdz |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("josh-oo/custom-decoder-ats", trust_remote_code=True, revision="4accedbe0b57d342d95ff546b6bbd3321451d504") |
|
decoder_tokenizer = AutoTokenizer.from_pretrained("josh-oo/german-gpt2-easy") |
|
decoder_tokenizer.add_tokens(['<</s>>','<<s>>','<<pad>>']) |
|
|
|
## |
|
|
|
example_text = "In tausenden Schweizer Privathaushalten kümmern sich Haushaltsangestellte um die Wäsche, betreuen die Kinder und sorgen für Sauberkeit. Durchschnittlich bekommen sie für die Arbeit rund 30 Franken pro Stunde Bruttolohn. Der grösste Teil von ihnen erhält aber 28 Franken." |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
model.eval() |
|
|
|
test_input = tokenizer([example_text], return_tensors="pt", padding=True, pad_to_multiple_of=1024) |
|
for key, value in test_input.items(): |
|
test_input[key] = value.to(device) |
|
|
|
outputs = model.generate(**test_input, num_beams=3, max_length=1024) |
|
decoder_tokenizer.batch_decode(outputs) |
|
``` |
|
|
|
## Citation |
|
If you use our mode, please cite: |
|
@misc{anschütz2023language, |
|
  title={Language Models for German Text Simplification: Overcoming Parallel Data Scarcity through Style-specific Pre-training}, |
|
  author={Miriam Anschütz and Joshua Oehms and Thomas Wimmer and Bartłomiej Jezierski and Georg Groh}, |
|
  year={2023}, |
|
  eprint={2305.12908}, |
|
  archivePrefix={arXiv}, |
|
  primaryClass={cs.CL} |
|
} |