joseagmz commited on
Commit
f3e7fe4
1 Parent(s): 9f58e5c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/OLMo-7B
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ollama-7B-Tinybook-epochs-1-lr-0002
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.4.0`
18
+ ```yaml
19
+ base_model: allenai/OLMo-7B
20
+ tokenizer_type: AutoTokenizer
21
+ model_type: AutoModelForCausalLM
22
+ trust_remote_code: true
23
+
24
+ load_in_8bit: false
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: utrgvseniorproject/Tinybook
30
+ type: completion
31
+ dataset_prepared_path: /home/josegomez15/med-llm/last_run_prepared
32
+ val_set_size: 0.05
33
+ output_dir: ./ollama-7B-Tinybook-epochs-1-lr-0002
34
+
35
+ sequence_len: 4096
36
+ sample_packing: false
37
+ pad_to_sequence_len: true
38
+
39
+ wandb_project: olmo-7B-Tinybook
40
+ wandb_entity: utrgvmedai
41
+ wandb_watch:
42
+ wandb_name: olmo-7B-Tinybook-epochs-1-lr-0002
43
+ wandb_log_model:
44
+
45
+ gradient_accumulation_steps: 1
46
+ micro_batch_size: 1
47
+ num_epochs: 1
48
+ optimizer: adamw_bnb_8bit
49
+ lr_scheduler: cosine
50
+ learning_rate: 0.0002
51
+
52
+ train_on_inputs: True # make sure you have this on True
53
+ group_by_length: false
54
+ bf16: auto
55
+ fp16:
56
+ tf32: false
57
+
58
+ gradient_checkpointing: false #olmo doesn't support
59
+ early_stopping_patience:
60
+ resume_from_checkpoint:
61
+ local_rank:
62
+ logging_steps: 1
63
+ xformers_attention:
64
+ flash_attention: true
65
+ flash_attn_cross_entropy: false
66
+ flash_attn_rms_norm: true
67
+ flash_attn_fuse_qkv: false
68
+ flash_attn_fuse_mlp: true
69
+
70
+ warmup_steps: 100
71
+ evals_per_epoch: 4
72
+ eval_table_size:
73
+ eval_sample_packing:
74
+ saves_per_epoch: 1
75
+ debug:
76
+ deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
77
+ weight_decay: 0.1
78
+ fsdp:
79
+ fsdp_config:
80
+ special_tokens:
81
+
82
+ ```
83
+
84
+ </details><br>
85
+
86
+ # ollama-7B-Tinybook-epochs-1-lr-0002
87
+
88
+ This model is a fine-tuned version of [allenai/OLMo-7B](https://huggingface.co/allenai/OLMo-7B) on the None dataset.
89
+ It achieves the following results on the evaluation set:
90
+ - Loss: 2.3906
91
+
92
+ ## Model description
93
+
94
+ More information needed
95
+
96
+ ## Intended uses & limitations
97
+
98
+ More information needed
99
+
100
+ ## Training and evaluation data
101
+
102
+ More information needed
103
+
104
+ ## Training procedure
105
+
106
+ ### Training hyperparameters
107
+
108
+ The following hyperparameters were used during training:
109
+ - learning_rate: 0.0002
110
+ - train_batch_size: 1
111
+ - eval_batch_size: 1
112
+ - seed: 42
113
+ - distributed_type: multi-GPU
114
+ - num_devices: 4
115
+ - total_train_batch_size: 4
116
+ - total_eval_batch_size: 4
117
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
118
+ - lr_scheduler_type: cosine
119
+ - lr_scheduler_warmup_steps: 100
120
+ - num_epochs: 1
121
+
122
+ ### Training results
123
+
124
+ | Training Loss | Epoch | Step | Validation Loss |
125
+ |:-------------:|:-----:|:----:|:---------------:|
126
+ | 4.3047 | 0.33 | 1 | 2.4062 |
127
+ | 4.0859 | 0.67 | 2 | 2.3906 |
128
+ | 3.9805 | 1.0 | 3 | 2.3906 |
129
+
130
+
131
+ ### Framework versions
132
+
133
+ - Transformers 4.38.0
134
+ - Pytorch 2.0.1+cu117
135
+ - Datasets 2.17.0
136
+ - Tokenizers 0.15.0
checkpoint-3/config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "allenai/OLMo-7B",
3
+ "activation_type": "swiglu",
4
+ "alibi": false,
5
+ "alibi_bias_max": 8.0,
6
+ "architectures": [
7
+ "OLMoForCausalLM"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "attention_layer_norm": false,
11
+ "attention_layer_norm_with_affine": false,
12
+ "auto_map": {
13
+ "AutoConfig": "allenai/OLMo-7B--configuration_olmo.OLMoConfig",
14
+ "AutoModelForCausalLM": "allenai/OLMo-7B--modeling_olmo.OLMoForCausalLM",
15
+ "AutoTokenizer": [
16
+ "allenai/OLMo-7B--tokenization_olmo_fast.OLMoTokenizerFast",
17
+ "allenai/OLMo-7B--tokenization_olmo_fast.OLMoTokenizerFast"
18
+ ]
19
+ },
20
+ "bias_for_layer_norm": false,
21
+ "block_group_size": 1,
22
+ "block_type": "sequential",
23
+ "clip_qkv": null,
24
+ "d_model": 4096,
25
+ "embedding_dropout": 0.0,
26
+ "embedding_size": 50304,
27
+ "eos_token_id": 50279,
28
+ "flash_attention": true,
29
+ "include_bias": false,
30
+ "init_cutoff_factor": null,
31
+ "init_device": "meta",
32
+ "init_fn": "mitchell",
33
+ "init_std": 0.02,
34
+ "layer_norm_type": "default",
35
+ "layer_norm_with_affine": false,
36
+ "max_sequence_length": 4096,
37
+ "mlp_hidden_size": 22016,
38
+ "mlp_ratio": 4,
39
+ "model_type": "olmo",
40
+ "multi_query_attention": false,
41
+ "n_heads": 32,
42
+ "n_layers": 32,
43
+ "pad_token_id": 1,
44
+ "precision": "amp_bf16",
45
+ "residual_dropout": 0.0,
46
+ "rope": true,
47
+ "rope_full_precision": true,
48
+ "scale_logits": false,
49
+ "torch_dtype": "bfloat16",
50
+ "transformers_version": "4.38.0",
51
+ "use_cache": false,
52
+ "vocab_size": 50280,
53
+ "weight_tying": false
54
+ }
checkpoint-3/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "do_sample": true,
4
+ "eos_token_id": 50279,
5
+ "pad_token_id": 1,
6
+ "transformers_version": "4.38.0"
7
+ }
checkpoint-3/global_step3/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63a7b7b9b2801f7c079e6aa8345501b0954bfc1633ddeb4d3e0d639ba0bc4e1b
3
+ size 20664292727
checkpoint-3/global_step3/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d48b33c2be4c651e12f67a10457c38350096d5ffebbe570a791418c5fd00ceb
3
+ size 20664292919
checkpoint-3/global_step3/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd8082b85ba824e6a6527da02b9ccb73de71ff37de2be4731a05d13c3a2d6080
3
+ size 20664292983
checkpoint-3/global_step3/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10415893bf48db52c11cacb574381cf4071cc2cb281b968832e6bd7a35208d0d
3
+ size 20664292663
checkpoint-3/global_step3/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291003696ba5e9aea177be16ea2c80480fba140495d55c748b3905376cfdb5f3
3
+ size 13776240835
checkpoint-3/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3
checkpoint-3/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40ac7bae36ad0f9d5cf483940b2baa65253faf0449b69e426605bca31f62d30a
3
+ size 4988081728
checkpoint-3/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:493c0263ab7dff25d1efd94fbf65cb18df5addf1d1e80db79401f5eb64072660
3
+ size 4957673320
checkpoint-3/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66cc675348c6b927bfab49d97833388dc741b612ae60da36890d296859575737
3
+ size 3830452280
checkpoint-3/model.safetensors.index.json ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13776191488
4
+ },
5
+ "weight_map": {
6
+ "model.transformer.blocks.0.att_proj.weight": "model-00001-of-00003.safetensors",
7
+ "model.transformer.blocks.0.attn_out.weight": "model-00001-of-00003.safetensors",
8
+ "model.transformer.blocks.0.ff_out.weight": "model-00001-of-00003.safetensors",
9
+ "model.transformer.blocks.0.ff_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.transformer.blocks.1.att_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.transformer.blocks.1.attn_out.weight": "model-00001-of-00003.safetensors",
12
+ "model.transformer.blocks.1.ff_out.weight": "model-00001-of-00003.safetensors",
13
+ "model.transformer.blocks.1.ff_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.transformer.blocks.10.att_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.transformer.blocks.10.attn_out.weight": "model-00001-of-00003.safetensors",
16
+ "model.transformer.blocks.10.ff_out.weight": "model-00001-of-00003.safetensors",
17
+ "model.transformer.blocks.10.ff_proj.weight": "model-00001-of-00003.safetensors",
18
+ "model.transformer.blocks.11.att_proj.weight": "model-00002-of-00003.safetensors",
19
+ "model.transformer.blocks.11.attn_out.weight": "model-00001-of-00003.safetensors",
20
+ "model.transformer.blocks.11.ff_out.weight": "model-00001-of-00003.safetensors",
21
+ "model.transformer.blocks.11.ff_proj.weight": "model-00002-of-00003.safetensors",
22
+ "model.transformer.blocks.12.att_proj.weight": "model-00002-of-00003.safetensors",
23
+ "model.transformer.blocks.12.attn_out.weight": "model-00002-of-00003.safetensors",
24
+ "model.transformer.blocks.12.ff_out.weight": "model-00002-of-00003.safetensors",
25
+ "model.transformer.blocks.12.ff_proj.weight": "model-00002-of-00003.safetensors",
26
+ "model.transformer.blocks.13.att_proj.weight": "model-00002-of-00003.safetensors",
27
+ "model.transformer.blocks.13.attn_out.weight": "model-00002-of-00003.safetensors",
28
+ "model.transformer.blocks.13.ff_out.weight": "model-00002-of-00003.safetensors",
29
+ "model.transformer.blocks.13.ff_proj.weight": "model-00002-of-00003.safetensors",
30
+ "model.transformer.blocks.14.att_proj.weight": "model-00002-of-00003.safetensors",
31
+ "model.transformer.blocks.14.attn_out.weight": "model-00002-of-00003.safetensors",
32
+ "model.transformer.blocks.14.ff_out.weight": "model-00002-of-00003.safetensors",
33
+ "model.transformer.blocks.14.ff_proj.weight": "model-00002-of-00003.safetensors",
34
+ "model.transformer.blocks.15.att_proj.weight": "model-00002-of-00003.safetensors",
35
+ "model.transformer.blocks.15.attn_out.weight": "model-00002-of-00003.safetensors",
36
+ "model.transformer.blocks.15.ff_out.weight": "model-00002-of-00003.safetensors",
37
+ "model.transformer.blocks.15.ff_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.transformer.blocks.16.att_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.transformer.blocks.16.attn_out.weight": "model-00002-of-00003.safetensors",
40
+ "model.transformer.blocks.16.ff_out.weight": "model-00002-of-00003.safetensors",
41
+ "model.transformer.blocks.16.ff_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.transformer.blocks.17.att_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.transformer.blocks.17.attn_out.weight": "model-00002-of-00003.safetensors",
44
+ "model.transformer.blocks.17.ff_out.weight": "model-00002-of-00003.safetensors",
45
+ "model.transformer.blocks.17.ff_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.transformer.blocks.18.att_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.transformer.blocks.18.attn_out.weight": "model-00002-of-00003.safetensors",
48
+ "model.transformer.blocks.18.ff_out.weight": "model-00002-of-00003.safetensors",
49
+ "model.transformer.blocks.18.ff_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.transformer.blocks.19.att_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.transformer.blocks.19.attn_out.weight": "model-00002-of-00003.safetensors",
52
+ "model.transformer.blocks.19.ff_out.weight": "model-00002-of-00003.safetensors",
53
+ "model.transformer.blocks.19.ff_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.transformer.blocks.2.att_proj.weight": "model-00001-of-00003.safetensors",
55
+ "model.transformer.blocks.2.attn_out.weight": "model-00001-of-00003.safetensors",
56
+ "model.transformer.blocks.2.ff_out.weight": "model-00001-of-00003.safetensors",
57
+ "model.transformer.blocks.2.ff_proj.weight": "model-00001-of-00003.safetensors",
58
+ "model.transformer.blocks.20.att_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.transformer.blocks.20.attn_out.weight": "model-00002-of-00003.safetensors",
60
+ "model.transformer.blocks.20.ff_out.weight": "model-00002-of-00003.safetensors",
61
+ "model.transformer.blocks.20.ff_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.transformer.blocks.21.att_proj.weight": "model-00002-of-00003.safetensors",
63
+ "model.transformer.blocks.21.attn_out.weight": "model-00002-of-00003.safetensors",
64
+ "model.transformer.blocks.21.ff_out.weight": "model-00002-of-00003.safetensors",
65
+ "model.transformer.blocks.21.ff_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.transformer.blocks.22.att_proj.weight": "model-00002-of-00003.safetensors",
67
+ "model.transformer.blocks.22.attn_out.weight": "model-00002-of-00003.safetensors",
68
+ "model.transformer.blocks.22.ff_out.weight": "model-00002-of-00003.safetensors",
69
+ "model.transformer.blocks.22.ff_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.transformer.blocks.23.att_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.transformer.blocks.23.attn_out.weight": "model-00002-of-00003.safetensors",
72
+ "model.transformer.blocks.23.ff_out.weight": "model-00002-of-00003.safetensors",
73
+ "model.transformer.blocks.23.ff_proj.weight": "model-00003-of-00003.safetensors",
74
+ "model.transformer.blocks.24.att_proj.weight": "model-00003-of-00003.safetensors",
75
+ "model.transformer.blocks.24.attn_out.weight": "model-00003-of-00003.safetensors",
76
+ "model.transformer.blocks.24.ff_out.weight": "model-00003-of-00003.safetensors",
77
+ "model.transformer.blocks.24.ff_proj.weight": "model-00003-of-00003.safetensors",
78
+ "model.transformer.blocks.25.att_proj.weight": "model-00003-of-00003.safetensors",
79
+ "model.transformer.blocks.25.attn_out.weight": "model-00003-of-00003.safetensors",
80
+ "model.transformer.blocks.25.ff_out.weight": "model-00003-of-00003.safetensors",
81
+ "model.transformer.blocks.25.ff_proj.weight": "model-00003-of-00003.safetensors",
82
+ "model.transformer.blocks.26.att_proj.weight": "model-00003-of-00003.safetensors",
83
+ "model.transformer.blocks.26.attn_out.weight": "model-00003-of-00003.safetensors",
84
+ "model.transformer.blocks.26.ff_out.weight": "model-00003-of-00003.safetensors",
85
+ "model.transformer.blocks.26.ff_proj.weight": "model-00003-of-00003.safetensors",
86
+ "model.transformer.blocks.27.att_proj.weight": "model-00003-of-00003.safetensors",
87
+ "model.transformer.blocks.27.attn_out.weight": "model-00003-of-00003.safetensors",
88
+ "model.transformer.blocks.27.ff_out.weight": "model-00003-of-00003.safetensors",
89
+ "model.transformer.blocks.27.ff_proj.weight": "model-00003-of-00003.safetensors",
90
+ "model.transformer.blocks.28.att_proj.weight": "model-00003-of-00003.safetensors",
91
+ "model.transformer.blocks.28.attn_out.weight": "model-00003-of-00003.safetensors",
92
+ "model.transformer.blocks.28.ff_out.weight": "model-00003-of-00003.safetensors",
93
+ "model.transformer.blocks.28.ff_proj.weight": "model-00003-of-00003.safetensors",
94
+ "model.transformer.blocks.29.att_proj.weight": "model-00003-of-00003.safetensors",
95
+ "model.transformer.blocks.29.attn_out.weight": "model-00003-of-00003.safetensors",
96
+ "model.transformer.blocks.29.ff_out.weight": "model-00003-of-00003.safetensors",
97
+ "model.transformer.blocks.29.ff_proj.weight": "model-00003-of-00003.safetensors",
98
+ "model.transformer.blocks.3.att_proj.weight": "model-00001-of-00003.safetensors",
99
+ "model.transformer.blocks.3.attn_out.weight": "model-00001-of-00003.safetensors",
100
+ "model.transformer.blocks.3.ff_out.weight": "model-00001-of-00003.safetensors",
101
+ "model.transformer.blocks.3.ff_proj.weight": "model-00001-of-00003.safetensors",
102
+ "model.transformer.blocks.30.att_proj.weight": "model-00003-of-00003.safetensors",
103
+ "model.transformer.blocks.30.attn_out.weight": "model-00003-of-00003.safetensors",
104
+ "model.transformer.blocks.30.ff_out.weight": "model-00003-of-00003.safetensors",
105
+ "model.transformer.blocks.30.ff_proj.weight": "model-00003-of-00003.safetensors",
106
+ "model.transformer.blocks.31.att_proj.weight": "model-00003-of-00003.safetensors",
107
+ "model.transformer.blocks.31.attn_out.weight": "model-00003-of-00003.safetensors",
108
+ "model.transformer.blocks.31.ff_out.weight": "model-00003-of-00003.safetensors",
109
+ "model.transformer.blocks.31.ff_proj.weight": "model-00003-of-00003.safetensors",
110
+ "model.transformer.blocks.4.att_proj.weight": "model-00001-of-00003.safetensors",
111
+ "model.transformer.blocks.4.attn_out.weight": "model-00001-of-00003.safetensors",
112
+ "model.transformer.blocks.4.ff_out.weight": "model-00001-of-00003.safetensors",
113
+ "model.transformer.blocks.4.ff_proj.weight": "model-00001-of-00003.safetensors",
114
+ "model.transformer.blocks.5.att_proj.weight": "model-00001-of-00003.safetensors",
115
+ "model.transformer.blocks.5.attn_out.weight": "model-00001-of-00003.safetensors",
116
+ "model.transformer.blocks.5.ff_out.weight": "model-00001-of-00003.safetensors",
117
+ "model.transformer.blocks.5.ff_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.transformer.blocks.6.att_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.transformer.blocks.6.attn_out.weight": "model-00001-of-00003.safetensors",
120
+ "model.transformer.blocks.6.ff_out.weight": "model-00001-of-00003.safetensors",
121
+ "model.transformer.blocks.6.ff_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.transformer.blocks.7.att_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.transformer.blocks.7.attn_out.weight": "model-00001-of-00003.safetensors",
124
+ "model.transformer.blocks.7.ff_out.weight": "model-00001-of-00003.safetensors",
125
+ "model.transformer.blocks.7.ff_proj.weight": "model-00001-of-00003.safetensors",
126
+ "model.transformer.blocks.8.att_proj.weight": "model-00001-of-00003.safetensors",
127
+ "model.transformer.blocks.8.attn_out.weight": "model-00001-of-00003.safetensors",
128
+ "model.transformer.blocks.8.ff_out.weight": "model-00001-of-00003.safetensors",
129
+ "model.transformer.blocks.8.ff_proj.weight": "model-00001-of-00003.safetensors",
130
+ "model.transformer.blocks.9.att_proj.weight": "model-00001-of-00003.safetensors",
131
+ "model.transformer.blocks.9.attn_out.weight": "model-00001-of-00003.safetensors",
132
+ "model.transformer.blocks.9.ff_out.weight": "model-00001-of-00003.safetensors",
133
+ "model.transformer.blocks.9.ff_proj.weight": "model-00001-of-00003.safetensors",
134
+ "model.transformer.ff_out.weight": "model-00003-of-00003.safetensors",
135
+ "model.transformer.wte.weight": "model-00001-of-00003.safetensors"
136
+ }
137
+ }
checkpoint-3/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dffec05795b7d3ced5821c10057fe393a503834b279b96f3870374fcca567f6
3
+ size 17655
checkpoint-3/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da391f6fcee77d45d8316ae2541c4354a1d2bc68d26de374ff9e6cd1d2442841
3
+ size 17655
checkpoint-3/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c370271af94095d17cfd7e55ac9fa5025538e19c56b84380de7aa37e0aa82e4
3
+ size 17655
checkpoint-3/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:774c413b2a6747fe2e8a7ff31b4415735fbaa15708f26f8c71826be445fb4476
3
+ size 17655
checkpoint-3/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8882a55889f61ac16c8f5bc7fa29711e514f512f5598fd5d0dc1752fa7d6f7f7
3
+ size 627
checkpoint-3/trainer_state.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 1,
6
+ "global_step": 3,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.33,
13
+ "grad_norm": 320.38479062293203,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "loss": 4.3047,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.33,
20
+ "eval_loss": 2.40625,
21
+ "eval_runtime": 0.5413,
22
+ "eval_samples_per_second": 1.848,
23
+ "eval_steps_per_second": 1.848,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.67,
28
+ "grad_norm": 208.84861069085426,
29
+ "learning_rate": 4.000000000000001e-06,
30
+ "loss": 4.0859,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.67,
35
+ "eval_loss": 2.390625,
36
+ "eval_runtime": 0.536,
37
+ "eval_samples_per_second": 1.866,
38
+ "eval_steps_per_second": 1.866,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 1.0,
43
+ "grad_norm": 152.65601650442736,
44
+ "learning_rate": 6e-06,
45
+ "loss": 3.9805,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 1.0,
50
+ "eval_loss": 2.390625,
51
+ "eval_runtime": 0.5404,
52
+ "eval_samples_per_second": 1.851,
53
+ "eval_steps_per_second": 1.851,
54
+ "step": 3
55
+ }
56
+ ],
57
+ "logging_steps": 1,
58
+ "max_steps": 3,
59
+ "num_input_tokens_seen": 0,
60
+ "num_train_epochs": 1,
61
+ "save_steps": 500,
62
+ "total_flos": 1970616894750720.0,
63
+ "train_batch_size": 1,
64
+ "trial_name": null,
65
+ "trial_params": null
66
+ }
checkpoint-3/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52a72ebc0ab2a41065c71c4d03ae7640fa417b58b636d8ec5a15d65b0f3d9cae
3
+ size 6395
checkpoint-3/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "allenai/OLMo-7B",
3
+ "activation_type": "swiglu",
4
+ "alibi": false,
5
+ "alibi_bias_max": 8.0,
6
+ "architectures": [
7
+ "OLMoForCausalLM"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "attention_layer_norm": false,
11
+ "attention_layer_norm_with_affine": false,
12
+ "auto_map": {
13
+ "AutoConfig": "allenai/OLMo-7B--configuration_olmo.OLMoConfig",
14
+ "AutoModelForCausalLM": "allenai/OLMo-7B--modeling_olmo.OLMoForCausalLM",
15
+ "AutoTokenizer": [
16
+ "allenai/OLMo-7B--tokenization_olmo_fast.OLMoTokenizerFast",
17
+ "allenai/OLMo-7B--tokenization_olmo_fast.OLMoTokenizerFast"
18
+ ]
19
+ },
20
+ "bias_for_layer_norm": false,
21
+ "block_group_size": 1,
22
+ "block_type": "sequential",
23
+ "clip_qkv": null,
24
+ "d_model": 4096,
25
+ "embedding_dropout": 0.0,
26
+ "embedding_size": 50304,
27
+ "eos_token_id": 50279,
28
+ "flash_attention": true,
29
+ "include_bias": false,
30
+ "init_cutoff_factor": null,
31
+ "init_device": "meta",
32
+ "init_fn": "mitchell",
33
+ "init_std": 0.02,
34
+ "layer_norm_type": "default",
35
+ "layer_norm_with_affine": false,
36
+ "max_sequence_length": 4096,
37
+ "mlp_hidden_size": 22016,
38
+ "mlp_ratio": 4,
39
+ "model_type": "olmo",
40
+ "multi_query_attention": false,
41
+ "n_heads": 32,
42
+ "n_layers": 32,
43
+ "pad_token_id": 1,
44
+ "precision": "amp_bf16",
45
+ "residual_dropout": 0.0,
46
+ "rope": true,
47
+ "rope_full_precision": true,
48
+ "scale_logits": false,
49
+ "torch_dtype": "bfloat16",
50
+ "transformers_version": "4.38.0",
51
+ "use_cache": false,
52
+ "vocab_size": 50280,
53
+ "weight_tying": false
54
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "do_sample": true,
4
+ "eos_token_id": 50279,
5
+ "pad_token_id": 1,
6
+ "transformers_version": "4.38.0"
7
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c87135fefaebb593d88b82da343be87428e8b03b8a4fea367bb8c0925999689b
3
+ size 13776210149
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ }
227
+ },
228
+ "auto_map": {
229
+ "AutoConfig": "allenai/OLMo-7B--configuration_olmo.OLMoConfig",
230
+ "AutoTokenizer": [
231
+ "allenai/OLMo-7B--tokenization_olmo_fast.OLMoTokenizerFast",
232
+ "allenai/OLMo-7B--tokenization_olmo_fast.OLMoTokenizerFast"
233
+ ]
234
+ },
235
+ "clean_up_tokenization_spaces": true,
236
+ "eos_token": "<|endoftext|>",
237
+ "max_length": null,
238
+ "model_max_length": 1000000000000000019884624838656,
239
+ "pad_token": "<|padding|>",
240
+ "tokenizer_class": "OLMoTokenizer",
241
+ "truncation": "right"
242
+ }