joseagmz commited on
Commit
0f1e583
1 Parent(s): e26fc24

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +153 -0
  2. checkpoint-174/config.json +26 -0
  3. checkpoint-174/generation_config.json +7 -0
  4. checkpoint-174/global_step174/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-174/global_step174/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-174/global_step174/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-174/global_step174/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-174/global_step174/mp_rank_00_model_states.pt +3 -0
  9. checkpoint-174/latest +1 -0
  10. checkpoint-174/model-00001-of-00003.safetensors +3 -0
  11. checkpoint-174/model-00002-of-00003.safetensors +3 -0
  12. checkpoint-174/model-00003-of-00003.safetensors +3 -0
  13. checkpoint-174/model.safetensors.index.json +298 -0
  14. checkpoint-174/rng_state_0.pth +3 -0
  15. checkpoint-174/rng_state_1.pth +3 -0
  16. checkpoint-174/rng_state_2.pth +3 -0
  17. checkpoint-174/rng_state_3.pth +3 -0
  18. checkpoint-174/scheduler.pt +3 -0
  19. checkpoint-174/trainer_state.json +1303 -0
  20. checkpoint-174/training_args.bin +3 -0
  21. checkpoint-174/zero_to_fp32.py +592 -0
  22. checkpoint-261/config.json +26 -0
  23. checkpoint-261/generation_config.json +7 -0
  24. checkpoint-261/global_step261/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  25. checkpoint-261/global_step261/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  26. checkpoint-261/global_step261/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  27. checkpoint-261/global_step261/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  28. checkpoint-261/global_step261/mp_rank_00_model_states.pt +3 -0
  29. checkpoint-261/latest +1 -0
  30. checkpoint-261/model-00001-of-00003.safetensors +3 -0
  31. checkpoint-261/model-00002-of-00003.safetensors +3 -0
  32. checkpoint-261/model-00003-of-00003.safetensors +3 -0
  33. checkpoint-261/model.safetensors.index.json +298 -0
  34. checkpoint-261/rng_state_0.pth +3 -0
  35. checkpoint-261/rng_state_1.pth +3 -0
  36. checkpoint-261/rng_state_2.pth +3 -0
  37. checkpoint-261/rng_state_3.pth +3 -0
  38. checkpoint-261/scheduler.pt +3 -0
  39. checkpoint-261/trainer_state.json +1944 -0
  40. checkpoint-261/training_args.bin +3 -0
  41. checkpoint-261/zero_to_fp32.py +592 -0
  42. checkpoint-87/config.json +26 -0
  43. checkpoint-87/generation_config.json +7 -0
  44. checkpoint-87/global_step87/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  45. checkpoint-87/global_step87/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  46. checkpoint-87/global_step87/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  47. checkpoint-87/global_step87/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  48. checkpoint-87/global_step87/mp_rank_00_model_states.pt +3 -0
  49. checkpoint-87/latest +1 -0
  50. checkpoint-87/model-00001-of-00003.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: mistral-7B-MedText-epochs-3-lr-0002
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.4.0`
18
+ ```yaml
19
+ base_model: mistralai/Mistral-7B-v0.1
20
+ model_type: MistralForCausalLM
21
+ tokenizer_type: LlamaTokenizer
22
+ is_mistral_derived_model: true
23
+
24
+ load_in_8bit: false
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: utrgvseniorproject/medtext
30
+ type: completion
31
+ dataset_prepared_path: last_run_prepared
32
+ val_set_size: 0.05
33
+ output_dir: ./mistral-7B-MedText-epochs-3-lr-0002
34
+
35
+ sequence_len: 4096
36
+ sample_packing: true
37
+ pad_to_sequence_len: true
38
+
39
+ adapter:
40
+ lora_model_dir:
41
+ lora_r:
42
+ lora_alpha:
43
+ lora_dropout:
44
+ lora_target_linear:
45
+ lora_fan_in_fan_out:
46
+
47
+ wandb_project: mistral-7B-MedText
48
+ wandb_entity: utrgvmedai
49
+ wandb_watch:
50
+ wandb_name: mistral-7B-MedText-epochs-3-lr-0002
51
+ wandb_log_model:
52
+
53
+ gradient_accumulation_steps: 1
54
+ micro_batch_size: 1
55
+ num_epochs: 3
56
+ optimizer: adamw_bnb_8bit
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.0002
59
+
60
+ train_on_inputs: true
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ #resume_from_checkpoint: true
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+ flash_attn_cross_entropy: false
74
+ flash_attn_rms_norm: true
75
+ flash_attn_fuse_qkv: false
76
+ flash_attn_fuse_mlp: true
77
+
78
+ warmup_steps: 100
79
+ evals_per_epoch: 4
80
+ eval_table_size:
81
+ eval_sample_packing: False
82
+ saves_per_epoch: 1
83
+ debug:
84
+ deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
85
+ weight_decay: 0.1
86
+ fsdp:
87
+ fsdp_config:
88
+ special_tokens:
89
+
90
+ ```
91
+
92
+ </details><br>
93
+
94
+ # mistral-7B-MedText-epochs-3-lr-0002
95
+
96
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
97
+ It achieves the following results on the evaluation set:
98
+ - Loss: 7.2922
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 0.0002
118
+ - train_batch_size: 1
119
+ - eval_batch_size: 1
120
+ - seed: 42
121
+ - distributed_type: multi-GPU
122
+ - num_devices: 4
123
+ - total_train_batch_size: 4
124
+ - total_eval_batch_size: 4
125
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
126
+ - lr_scheduler_type: cosine
127
+ - lr_scheduler_warmup_steps: 100
128
+ - num_epochs: 3
129
+
130
+ ### Training results
131
+
132
+ | Training Loss | Epoch | Step | Validation Loss |
133
+ |:-------------:|:-----:|:----:|:---------------:|
134
+ | 1.3985 | 0.01 | 1 | 1.5677 |
135
+ | 1.4776 | 0.25 | 22 | 1.8568 |
136
+ | 10.1246 | 0.51 | 44 | 8.7590 |
137
+ | 8.1284 | 0.76 | 66 | 8.0049 |
138
+ | 7.3967 | 1.01 | 88 | 7.4614 |
139
+ | 7.2567 | 1.23 | 110 | 7.2993 |
140
+ | 7.3329 | 1.48 | 132 | 7.3749 |
141
+ | 7.0671 | 1.74 | 154 | 7.3365 |
142
+ | 7.4786 | 1.99 | 176 | 7.3194 |
143
+ | 7.3548 | 2.22 | 198 | 7.3092 |
144
+ | 7.1782 | 2.47 | 220 | 7.2964 |
145
+ | 7.2729 | 2.72 | 242 | 7.2922 |
146
+
147
+
148
+ ### Framework versions
149
+
150
+ - Transformers 4.38.0
151
+ - Pytorch 2.0.1+cu117
152
+ - Datasets 2.17.0
153
+ - Tokenizers 0.15.0
checkpoint-174/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.38.0",
24
+ "use_cache": false,
25
+ "vocab_size": 32000
26
+ }
checkpoint-174/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.38.0"
7
+ }
checkpoint-174/global_step174/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03d6725388def79326de49d69d8c6b94170b534dd31f6a030b7a2cbc2d601c94
3
+ size 21725204471
checkpoint-174/global_step174/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9849abfddf8ba736da45584934d8c464b6e43f73e0dab39ae34b2420c7668144
3
+ size 21725205111
checkpoint-174/global_step174/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:013acab701355320fcbd84283d45579ded93da9287d18209908e3313d973915f
3
+ size 21725205111
checkpoint-174/global_step174/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:107c21efe5b9cb5ee1ea8f2e3e646ca7683d8b5b2ac2d693c020a4c9e0435282
3
+ size 21725204535
checkpoint-174/global_step174/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ec4f15bbbe81efd524cf417a820f9118838524077c76a700f3567a758312b8a
3
+ size 14483551747
checkpoint-174/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step174
checkpoint-174/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3de77ae8eae772f363eeb8943d44cccb53d98891ac8469da8e9f370750a5d155
3
+ size 4943162336
checkpoint-174/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45f0c04c0135c3b2c9d387fe2334075a0a1b40b1bdc5d5126a65b86e2085fbf1
3
+ size 4999819336
checkpoint-174/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a574bf1ffd420f13cf2f6d14a3d032ba8c604cb738a0266920a361ac5418eb00
3
+ size 4540516344
checkpoint-174/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
checkpoint-174/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aa38064359163a436b682a76922629be0d47715cc93798f53c30584786df380
3
+ size 17655
checkpoint-174/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386882d88441fb270dac4c0a02c6b12d9125a96b7fa06d4456448d9d1b9da975
3
+ size 17655
checkpoint-174/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c2119f0f2530fd325c172a94b131c42f068b4b61340e0b39e5188ebdebae961
3
+ size 17655
checkpoint-174/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b265d61c7eae8db516afc3f2f413284853452f9b41a53ad49381bf25c87ed7a9
3
+ size 17655
checkpoint-174/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ba61684322025b96b5a644148a042abe6fbab4ac762f0d5bcae8f648817ea4e
3
+ size 627
checkpoint-174/trainer_state.json ADDED
@@ -0,0 +1,1303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9655172413793105,
5
+ "eval_steps": 22,
6
+ "global_step": 174,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 19.59183260405101,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "loss": 1.3985,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "eval_loss": 1.5676738023757935,
21
+ "eval_runtime": 3.9227,
22
+ "eval_samples_per_second": 4.844,
23
+ "eval_steps_per_second": 1.275,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.02,
28
+ "grad_norm": 25.857640141956836,
29
+ "learning_rate": 4.000000000000001e-06,
30
+ "loss": 1.6073,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.03,
35
+ "grad_norm": 19.53747244629775,
36
+ "learning_rate": 6e-06,
37
+ "loss": 1.5784,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.05,
42
+ "grad_norm": 32.1611390841105,
43
+ "learning_rate": 8.000000000000001e-06,
44
+ "loss": 1.4924,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "grad_norm": 25.68491589990429,
50
+ "learning_rate": 1e-05,
51
+ "loss": 1.5215,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.07,
56
+ "grad_norm": 21.800722806654328,
57
+ "learning_rate": 1.2e-05,
58
+ "loss": 1.5508,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.08,
63
+ "grad_norm": 17.19812526688047,
64
+ "learning_rate": 1.4000000000000001e-05,
65
+ "loss": 1.205,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.09,
70
+ "grad_norm": 33.24510948526866,
71
+ "learning_rate": 1.6000000000000003e-05,
72
+ "loss": 1.6376,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1,
77
+ "grad_norm": 14.986129451187,
78
+ "learning_rate": 1.8e-05,
79
+ "loss": 1.454,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.11,
84
+ "grad_norm": 17.517194747344856,
85
+ "learning_rate": 2e-05,
86
+ "loss": 1.6559,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.13,
91
+ "grad_norm": 18.22606604955052,
92
+ "learning_rate": 2.2000000000000003e-05,
93
+ "loss": 1.5816,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.14,
98
+ "grad_norm": 26.577328122239592,
99
+ "learning_rate": 2.4e-05,
100
+ "loss": 1.7884,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.15,
105
+ "grad_norm": 17.563463503652706,
106
+ "learning_rate": 2.6000000000000002e-05,
107
+ "loss": 1.4405,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.16,
112
+ "grad_norm": 19.98739837372538,
113
+ "learning_rate": 2.8000000000000003e-05,
114
+ "loss": 1.7512,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.17,
119
+ "grad_norm": 16.25364292099236,
120
+ "learning_rate": 3e-05,
121
+ "loss": 1.7037,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.18,
126
+ "grad_norm": 22.328347783615648,
127
+ "learning_rate": 3.2000000000000005e-05,
128
+ "loss": 1.5476,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.2,
133
+ "grad_norm": 20.71265405702363,
134
+ "learning_rate": 3.4000000000000007e-05,
135
+ "loss": 1.8108,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.21,
140
+ "grad_norm": 22.425069186679085,
141
+ "learning_rate": 3.6e-05,
142
+ "loss": 1.6751,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.22,
147
+ "grad_norm": 18.646553829771403,
148
+ "learning_rate": 3.8e-05,
149
+ "loss": 1.7696,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.23,
154
+ "grad_norm": 16.74801305116847,
155
+ "learning_rate": 4e-05,
156
+ "loss": 1.7699,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.24,
161
+ "grad_norm": 30.99364381661585,
162
+ "learning_rate": 4.2e-05,
163
+ "loss": 2.1827,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.25,
168
+ "grad_norm": 19.761245037191404,
169
+ "learning_rate": 4.4000000000000006e-05,
170
+ "loss": 1.4776,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.25,
175
+ "eval_loss": 1.856759786605835,
176
+ "eval_runtime": 1.4309,
177
+ "eval_samples_per_second": 13.279,
178
+ "eval_steps_per_second": 3.494,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.26,
183
+ "grad_norm": 27.821861354666428,
184
+ "learning_rate": 4.600000000000001e-05,
185
+ "loss": 1.8677,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.28,
190
+ "grad_norm": 22.80354998875929,
191
+ "learning_rate": 4.8e-05,
192
+ "loss": 1.7424,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.29,
197
+ "grad_norm": 19.920321630615994,
198
+ "learning_rate": 5e-05,
199
+ "loss": 1.769,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.3,
204
+ "grad_norm": 23.82621534355921,
205
+ "learning_rate": 5.2000000000000004e-05,
206
+ "loss": 1.8615,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.31,
211
+ "grad_norm": 27.63826215875828,
212
+ "learning_rate": 5.4000000000000005e-05,
213
+ "loss": 1.7164,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.32,
218
+ "grad_norm": 30.810269474286084,
219
+ "learning_rate": 5.6000000000000006e-05,
220
+ "loss": 1.8922,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.33,
225
+ "grad_norm": 23.279443617002265,
226
+ "learning_rate": 5.8e-05,
227
+ "loss": 1.8507,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.34,
232
+ "grad_norm": 18.091756285883704,
233
+ "learning_rate": 6e-05,
234
+ "loss": 1.6537,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.36,
239
+ "grad_norm": 23.292568819411724,
240
+ "learning_rate": 6.2e-05,
241
+ "loss": 1.9125,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.37,
246
+ "grad_norm": 52.21913805211888,
247
+ "learning_rate": 6.400000000000001e-05,
248
+ "loss": 1.8456,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.38,
253
+ "grad_norm": 30.771918199992527,
254
+ "learning_rate": 6.6e-05,
255
+ "loss": 1.9398,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.39,
260
+ "grad_norm": 40.19880102087157,
261
+ "learning_rate": 6.800000000000001e-05,
262
+ "loss": 2.3763,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.4,
267
+ "grad_norm": 28.33779955799431,
268
+ "learning_rate": 7e-05,
269
+ "loss": 2.0815,
270
+ "step": 35
271
+ },
272
+ {
273
+ "epoch": 0.41,
274
+ "grad_norm": 54.379783823327905,
275
+ "learning_rate": 7.2e-05,
276
+ "loss": 2.1032,
277
+ "step": 36
278
+ },
279
+ {
280
+ "epoch": 0.43,
281
+ "grad_norm": 662.6041427579516,
282
+ "learning_rate": 7.4e-05,
283
+ "loss": 3.5917,
284
+ "step": 37
285
+ },
286
+ {
287
+ "epoch": 0.44,
288
+ "grad_norm": 4011.501090614335,
289
+ "learning_rate": 7.6e-05,
290
+ "loss": 7.3933,
291
+ "step": 38
292
+ },
293
+ {
294
+ "epoch": 0.45,
295
+ "grad_norm": 753.5816146908044,
296
+ "learning_rate": 7.800000000000001e-05,
297
+ "loss": 15.8371,
298
+ "step": 39
299
+ },
300
+ {
301
+ "epoch": 0.46,
302
+ "grad_norm": 291.86609997137384,
303
+ "learning_rate": 8e-05,
304
+ "loss": 9.0249,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.47,
309
+ "grad_norm": 922.0326051718562,
310
+ "learning_rate": 8.2e-05,
311
+ "loss": 9.8922,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.48,
316
+ "grad_norm": 115.68135873083658,
317
+ "learning_rate": 8.4e-05,
318
+ "loss": 8.2719,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.49,
323
+ "grad_norm": 693.1702757980898,
324
+ "learning_rate": 8.6e-05,
325
+ "loss": 24.1699,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.51,
330
+ "grad_norm": 219.78828591396768,
331
+ "learning_rate": 8.800000000000001e-05,
332
+ "loss": 10.1246,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.51,
337
+ "eval_loss": 8.758976936340332,
338
+ "eval_runtime": 1.3819,
339
+ "eval_samples_per_second": 13.749,
340
+ "eval_steps_per_second": 3.618,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.52,
345
+ "grad_norm": 101.32256273283853,
346
+ "learning_rate": 9e-05,
347
+ "loss": 9.1756,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.53,
352
+ "grad_norm": 11.958039992364316,
353
+ "learning_rate": 9.200000000000001e-05,
354
+ "loss": 7.7273,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.54,
359
+ "grad_norm": 3232.8188937829473,
360
+ "learning_rate": 9.4e-05,
361
+ "loss": 8.7486,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.55,
366
+ "grad_norm": 34.97640980952823,
367
+ "learning_rate": 9.6e-05,
368
+ "loss": 8.0394,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.56,
373
+ "grad_norm": 28.785233378323184,
374
+ "learning_rate": 9.8e-05,
375
+ "loss": 7.6241,
376
+ "step": 49
377
+ },
378
+ {
379
+ "epoch": 0.57,
380
+ "grad_norm": 734.1733446536996,
381
+ "learning_rate": 0.0001,
382
+ "loss": 7.7813,
383
+ "step": 50
384
+ },
385
+ {
386
+ "epoch": 0.59,
387
+ "grad_norm": 59.66290191764372,
388
+ "learning_rate": 0.00010200000000000001,
389
+ "loss": 7.6734,
390
+ "step": 51
391
+ },
392
+ {
393
+ "epoch": 0.6,
394
+ "grad_norm": 18.23606863385719,
395
+ "learning_rate": 0.00010400000000000001,
396
+ "loss": 7.8783,
397
+ "step": 52
398
+ },
399
+ {
400
+ "epoch": 0.61,
401
+ "grad_norm": 15.152500341579357,
402
+ "learning_rate": 0.00010600000000000002,
403
+ "loss": 7.6016,
404
+ "step": 53
405
+ },
406
+ {
407
+ "epoch": 0.62,
408
+ "grad_norm": 25.1062172290986,
409
+ "learning_rate": 0.00010800000000000001,
410
+ "loss": 7.7206,
411
+ "step": 54
412
+ },
413
+ {
414
+ "epoch": 0.63,
415
+ "grad_norm": 30.75760910048317,
416
+ "learning_rate": 0.00011000000000000002,
417
+ "loss": 7.7526,
418
+ "step": 55
419
+ },
420
+ {
421
+ "epoch": 0.64,
422
+ "grad_norm": 18.354297835205724,
423
+ "learning_rate": 0.00011200000000000001,
424
+ "loss": 7.5551,
425
+ "step": 56
426
+ },
427
+ {
428
+ "epoch": 0.66,
429
+ "grad_norm": 32.48061320811231,
430
+ "learning_rate": 0.00011399999999999999,
431
+ "loss": 7.6922,
432
+ "step": 57
433
+ },
434
+ {
435
+ "epoch": 0.67,
436
+ "grad_norm": 26.624723764338736,
437
+ "learning_rate": 0.000116,
438
+ "loss": 7.5791,
439
+ "step": 58
440
+ },
441
+ {
442
+ "epoch": 0.68,
443
+ "grad_norm": 13.92226298912218,
444
+ "learning_rate": 0.000118,
445
+ "loss": 7.3692,
446
+ "step": 59
447
+ },
448
+ {
449
+ "epoch": 0.69,
450
+ "grad_norm": 15.428105634893914,
451
+ "learning_rate": 0.00012,
452
+ "loss": 7.564,
453
+ "step": 60
454
+ },
455
+ {
456
+ "epoch": 0.7,
457
+ "grad_norm": 23.02235056392551,
458
+ "learning_rate": 0.000122,
459
+ "loss": 7.3948,
460
+ "step": 61
461
+ },
462
+ {
463
+ "epoch": 0.71,
464
+ "grad_norm": 16.470374126805776,
465
+ "learning_rate": 0.000124,
466
+ "loss": 7.4646,
467
+ "step": 62
468
+ },
469
+ {
470
+ "epoch": 0.72,
471
+ "grad_norm": 19.574553557429,
472
+ "learning_rate": 0.000126,
473
+ "loss": 7.3902,
474
+ "step": 63
475
+ },
476
+ {
477
+ "epoch": 0.74,
478
+ "grad_norm": 25.549182808604662,
479
+ "learning_rate": 0.00012800000000000002,
480
+ "loss": 7.5461,
481
+ "step": 64
482
+ },
483
+ {
484
+ "epoch": 0.75,
485
+ "grad_norm": 618.1147749407063,
486
+ "learning_rate": 0.00013000000000000002,
487
+ "loss": 8.157,
488
+ "step": 65
489
+ },
490
+ {
491
+ "epoch": 0.76,
492
+ "grad_norm": 66.0610660913446,
493
+ "learning_rate": 0.000132,
494
+ "loss": 8.1284,
495
+ "step": 66
496
+ },
497
+ {
498
+ "epoch": 0.76,
499
+ "eval_loss": 8.004860877990723,
500
+ "eval_runtime": 1.3748,
501
+ "eval_samples_per_second": 13.82,
502
+ "eval_steps_per_second": 3.637,
503
+ "step": 66
504
+ },
505
+ {
506
+ "epoch": 0.77,
507
+ "grad_norm": 41.635960690924975,
508
+ "learning_rate": 0.000134,
509
+ "loss": 8.0602,
510
+ "step": 67
511
+ },
512
+ {
513
+ "epoch": 0.78,
514
+ "grad_norm": 16.679869546723175,
515
+ "learning_rate": 0.00013600000000000003,
516
+ "loss": 7.8268,
517
+ "step": 68
518
+ },
519
+ {
520
+ "epoch": 0.79,
521
+ "grad_norm": 33.70142265056291,
522
+ "learning_rate": 0.000138,
523
+ "loss": 8.1206,
524
+ "step": 69
525
+ },
526
+ {
527
+ "epoch": 0.8,
528
+ "grad_norm": 43.29315748881759,
529
+ "learning_rate": 0.00014,
530
+ "loss": 7.7882,
531
+ "step": 70
532
+ },
533
+ {
534
+ "epoch": 0.82,
535
+ "grad_norm": 28.3799834727588,
536
+ "learning_rate": 0.000142,
537
+ "loss": 7.5454,
538
+ "step": 71
539
+ },
540
+ {
541
+ "epoch": 0.83,
542
+ "grad_norm": 30.911781055251613,
543
+ "learning_rate": 0.000144,
544
+ "loss": 7.7616,
545
+ "step": 72
546
+ },
547
+ {
548
+ "epoch": 0.84,
549
+ "grad_norm": 56.741836296758365,
550
+ "learning_rate": 0.000146,
551
+ "loss": 8.1145,
552
+ "step": 73
553
+ },
554
+ {
555
+ "epoch": 0.85,
556
+ "grad_norm": 13.967249574234195,
557
+ "learning_rate": 0.000148,
558
+ "loss": 7.6758,
559
+ "step": 74
560
+ },
561
+ {
562
+ "epoch": 0.86,
563
+ "grad_norm": 42.28071588262047,
564
+ "learning_rate": 0.00015000000000000001,
565
+ "loss": 7.5507,
566
+ "step": 75
567
+ },
568
+ {
569
+ "epoch": 0.87,
570
+ "grad_norm": 27.40577229308579,
571
+ "learning_rate": 0.000152,
572
+ "loss": 7.6852,
573
+ "step": 76
574
+ },
575
+ {
576
+ "epoch": 0.89,
577
+ "grad_norm": 21.422615778584905,
578
+ "learning_rate": 0.000154,
579
+ "loss": 7.6071,
580
+ "step": 77
581
+ },
582
+ {
583
+ "epoch": 0.9,
584
+ "grad_norm": 28.22569647336005,
585
+ "learning_rate": 0.00015600000000000002,
586
+ "loss": 7.5556,
587
+ "step": 78
588
+ },
589
+ {
590
+ "epoch": 0.91,
591
+ "grad_norm": 20.075502929468385,
592
+ "learning_rate": 0.00015800000000000002,
593
+ "loss": 7.529,
594
+ "step": 79
595
+ },
596
+ {
597
+ "epoch": 0.92,
598
+ "grad_norm": 14.896626626967638,
599
+ "learning_rate": 0.00016,
600
+ "loss": 7.5352,
601
+ "step": 80
602
+ },
603
+ {
604
+ "epoch": 0.93,
605
+ "grad_norm": 16.98565517398293,
606
+ "learning_rate": 0.000162,
607
+ "loss": 7.5734,
608
+ "step": 81
609
+ },
610
+ {
611
+ "epoch": 0.94,
612
+ "grad_norm": 17.76803489316823,
613
+ "learning_rate": 0.000164,
614
+ "loss": 7.591,
615
+ "step": 82
616
+ },
617
+ {
618
+ "epoch": 0.95,
619
+ "grad_norm": 15.601674972992182,
620
+ "learning_rate": 0.000166,
621
+ "loss": 7.4251,
622
+ "step": 83
623
+ },
624
+ {
625
+ "epoch": 0.97,
626
+ "grad_norm": 21.36580777081032,
627
+ "learning_rate": 0.000168,
628
+ "loss": 7.728,
629
+ "step": 84
630
+ },
631
+ {
632
+ "epoch": 0.98,
633
+ "grad_norm": 19.73380900316605,
634
+ "learning_rate": 0.00017,
635
+ "loss": 7.3548,
636
+ "step": 85
637
+ },
638
+ {
639
+ "epoch": 0.99,
640
+ "grad_norm": 16.40313028374367,
641
+ "learning_rate": 0.000172,
642
+ "loss": 7.3652,
643
+ "step": 86
644
+ },
645
+ {
646
+ "epoch": 1.0,
647
+ "grad_norm": 11.846265862818466,
648
+ "learning_rate": 0.000174,
649
+ "loss": 7.4363,
650
+ "step": 87
651
+ },
652
+ {
653
+ "epoch": 1.01,
654
+ "grad_norm": 11.82176337757903,
655
+ "learning_rate": 0.00017600000000000002,
656
+ "loss": 7.3967,
657
+ "step": 88
658
+ },
659
+ {
660
+ "epoch": 1.01,
661
+ "eval_loss": 7.461406707763672,
662
+ "eval_runtime": 1.3867,
663
+ "eval_samples_per_second": 13.702,
664
+ "eval_steps_per_second": 3.606,
665
+ "step": 88
666
+ },
667
+ {
668
+ "epoch": 1.02,
669
+ "grad_norm": 14.25806078550941,
670
+ "learning_rate": 0.00017800000000000002,
671
+ "loss": 7.3814,
672
+ "step": 89
673
+ },
674
+ {
675
+ "epoch": 1.03,
676
+ "grad_norm": 10.077089336320658,
677
+ "learning_rate": 0.00018,
678
+ "loss": 7.2599,
679
+ "step": 90
680
+ },
681
+ {
682
+ "epoch": 1.01,
683
+ "grad_norm": 15.159363102480643,
684
+ "learning_rate": 0.000182,
685
+ "loss": 7.5719,
686
+ "step": 91
687
+ },
688
+ {
689
+ "epoch": 1.02,
690
+ "grad_norm": 14.678683877513562,
691
+ "learning_rate": 0.00018400000000000003,
692
+ "loss": 7.4794,
693
+ "step": 92
694
+ },
695
+ {
696
+ "epoch": 1.03,
697
+ "grad_norm": 16.396549401486602,
698
+ "learning_rate": 0.00018600000000000002,
699
+ "loss": 7.6211,
700
+ "step": 93
701
+ },
702
+ {
703
+ "epoch": 1.05,
704
+ "grad_norm": 15.078668930441678,
705
+ "learning_rate": 0.000188,
706
+ "loss": 7.3625,
707
+ "step": 94
708
+ },
709
+ {
710
+ "epoch": 1.06,
711
+ "grad_norm": 13.546080322892589,
712
+ "learning_rate": 0.00019,
713
+ "loss": 7.3016,
714
+ "step": 95
715
+ },
716
+ {
717
+ "epoch": 1.07,
718
+ "grad_norm": 18.231949750348118,
719
+ "learning_rate": 0.000192,
720
+ "loss": 7.386,
721
+ "step": 96
722
+ },
723
+ {
724
+ "epoch": 1.08,
725
+ "grad_norm": 12.444086372431334,
726
+ "learning_rate": 0.000194,
727
+ "loss": 7.5534,
728
+ "step": 97
729
+ },
730
+ {
731
+ "epoch": 1.09,
732
+ "grad_norm": 9.994459143045797,
733
+ "learning_rate": 0.000196,
734
+ "loss": 7.4254,
735
+ "step": 98
736
+ },
737
+ {
738
+ "epoch": 1.1,
739
+ "grad_norm": 14.889247706503676,
740
+ "learning_rate": 0.00019800000000000002,
741
+ "loss": 7.3938,
742
+ "step": 99
743
+ },
744
+ {
745
+ "epoch": 1.11,
746
+ "grad_norm": 19.194847464605004,
747
+ "learning_rate": 0.0002,
748
+ "loss": 7.3875,
749
+ "step": 100
750
+ },
751
+ {
752
+ "epoch": 1.13,
753
+ "grad_norm": 19.234057674068023,
754
+ "learning_rate": 0.00019998096274980728,
755
+ "loss": 7.348,
756
+ "step": 101
757
+ },
758
+ {
759
+ "epoch": 1.14,
760
+ "grad_norm": 10.248320279074052,
761
+ "learning_rate": 0.000199923858247567,
762
+ "loss": 7.2365,
763
+ "step": 102
764
+ },
765
+ {
766
+ "epoch": 1.15,
767
+ "grad_norm": 15.579201434411983,
768
+ "learning_rate": 0.00019982870823553308,
769
+ "loss": 7.2351,
770
+ "step": 103
771
+ },
772
+ {
773
+ "epoch": 1.16,
774
+ "grad_norm": 10.951732160571428,
775
+ "learning_rate": 0.00019969554894159723,
776
+ "loss": 7.4413,
777
+ "step": 104
778
+ },
779
+ {
780
+ "epoch": 1.17,
781
+ "grad_norm": 12.034336556190219,
782
+ "learning_rate": 0.00019952443106549533,
783
+ "loss": 7.4256,
784
+ "step": 105
785
+ },
786
+ {
787
+ "epoch": 1.18,
788
+ "grad_norm": 11.555864069154051,
789
+ "learning_rate": 0.00019931541975950378,
790
+ "loss": 7.0947,
791
+ "step": 106
792
+ },
793
+ {
794
+ "epoch": 1.2,
795
+ "grad_norm": 8.079125584036722,
796
+ "learning_rate": 0.00019906859460363307,
797
+ "loss": 7.3727,
798
+ "step": 107
799
+ },
800
+ {
801
+ "epoch": 1.21,
802
+ "grad_norm": 10.901301706963714,
803
+ "learning_rate": 0.00019878404957532814,
804
+ "loss": 7.2419,
805
+ "step": 108
806
+ },
807
+ {
808
+ "epoch": 1.22,
809
+ "grad_norm": 9.771076993744128,
810
+ "learning_rate": 0.0001984618930136869,
811
+ "loss": 7.2896,
812
+ "step": 109
813
+ },
814
+ {
815
+ "epoch": 1.23,
816
+ "grad_norm": 11.395240298688034,
817
+ "learning_rate": 0.00019810224757821064,
818
+ "loss": 7.2567,
819
+ "step": 110
820
+ },
821
+ {
822
+ "epoch": 1.23,
823
+ "eval_loss": 7.299312591552734,
824
+ "eval_runtime": 1.381,
825
+ "eval_samples_per_second": 13.758,
826
+ "eval_steps_per_second": 3.621,
827
+ "step": 110
828
+ },
829
+ {
830
+ "epoch": 1.24,
831
+ "grad_norm": 11.839939762683946,
832
+ "learning_rate": 0.00019770525020210204,
833
+ "loss": 7.3145,
834
+ "step": 111
835
+ },
836
+ {
837
+ "epoch": 1.25,
838
+ "grad_norm": 13.454044820108352,
839
+ "learning_rate": 0.0001972710520401287,
840
+ "loss": 7.3279,
841
+ "step": 112
842
+ },
843
+ {
844
+ "epoch": 1.26,
845
+ "grad_norm": 10.349510041217494,
846
+ "learning_rate": 0.0001967998184110713,
847
+ "loss": 7.0995,
848
+ "step": 113
849
+ },
850
+ {
851
+ "epoch": 1.28,
852
+ "grad_norm": 11.299695940906268,
853
+ "learning_rate": 0.00019629172873477995,
854
+ "loss": 7.1545,
855
+ "step": 114
856
+ },
857
+ {
858
+ "epoch": 1.29,
859
+ "grad_norm": 10.300523126150598,
860
+ "learning_rate": 0.00019574697646386027,
861
+ "loss": 7.2619,
862
+ "step": 115
863
+ },
864
+ {
865
+ "epoch": 1.3,
866
+ "grad_norm": 12.280692750358627,
867
+ "learning_rate": 0.0001951657690100178,
868
+ "loss": 7.4703,
869
+ "step": 116
870
+ },
871
+ {
872
+ "epoch": 1.31,
873
+ "grad_norm": 11.308344462386193,
874
+ "learning_rate": 0.0001945483276650868,
875
+ "loss": 7.2927,
876
+ "step": 117
877
+ },
878
+ {
879
+ "epoch": 1.32,
880
+ "grad_norm": 9.46182612207882,
881
+ "learning_rate": 0.0001938948875167745,
882
+ "loss": 7.1097,
883
+ "step": 118
884
+ },
885
+ {
886
+ "epoch": 1.33,
887
+ "grad_norm": 8.495214573764272,
888
+ "learning_rate": 0.00019320569735915271,
889
+ "loss": 7.2199,
890
+ "step": 119
891
+ },
892
+ {
893
+ "epoch": 1.34,
894
+ "grad_norm": 10.888318204738358,
895
+ "learning_rate": 0.00019248101959793066,
896
+ "loss": 7.4214,
897
+ "step": 120
898
+ },
899
+ {
900
+ "epoch": 1.36,
901
+ "grad_norm": 15.655909856272627,
902
+ "learning_rate": 0.00019172113015054532,
903
+ "loss": 7.4141,
904
+ "step": 121
905
+ },
906
+ {
907
+ "epoch": 1.37,
908
+ "grad_norm": 14.348570302527095,
909
+ "learning_rate": 0.00019092631834110723,
910
+ "loss": 7.2034,
911
+ "step": 122
912
+ },
913
+ {
914
+ "epoch": 1.38,
915
+ "grad_norm": 11.216620878113865,
916
+ "learning_rate": 0.0001900968867902419,
917
+ "loss": 7.1925,
918
+ "step": 123
919
+ },
920
+ {
921
+ "epoch": 1.39,
922
+ "grad_norm": 15.214529842718143,
923
+ "learning_rate": 0.00018923315129986835,
924
+ "loss": 7.204,
925
+ "step": 124
926
+ },
927
+ {
928
+ "epoch": 1.4,
929
+ "grad_norm": 24.933551829531577,
930
+ "learning_rate": 0.00018833544073295917,
931
+ "loss": 7.5231,
932
+ "step": 125
933
+ },
934
+ {
935
+ "epoch": 1.41,
936
+ "grad_norm": 12.291980045440198,
937
+ "learning_rate": 0.00018740409688832764,
938
+ "loss": 7.2323,
939
+ "step": 126
940
+ },
941
+ {
942
+ "epoch": 1.43,
943
+ "grad_norm": 19.503396545387695,
944
+ "learning_rate": 0.00018643947437048944,
945
+ "loss": 7.3214,
946
+ "step": 127
947
+ },
948
+ {
949
+ "epoch": 1.44,
950
+ "grad_norm": 13.982404823681808,
951
+ "learning_rate": 0.00018544194045464886,
952
+ "loss": 7.4008,
953
+ "step": 128
954
+ },
955
+ {
956
+ "epoch": 1.45,
957
+ "grad_norm": 13.775851829485163,
958
+ "learning_rate": 0.00018441187494686053,
959
+ "loss": 7.2854,
960
+ "step": 129
961
+ },
962
+ {
963
+ "epoch": 1.46,
964
+ "grad_norm": 16.44073199273777,
965
+ "learning_rate": 0.0001833496700394202,
966
+ "loss": 7.4218,
967
+ "step": 130
968
+ },
969
+ {
970
+ "epoch": 1.47,
971
+ "grad_norm": 21.66328419423237,
972
+ "learning_rate": 0.00018225573016153945,
973
+ "loss": 7.3589,
974
+ "step": 131
975
+ },
976
+ {
977
+ "epoch": 1.48,
978
+ "grad_norm": 14.027278482513156,
979
+ "learning_rate": 0.00018113047182536127,
980
+ "loss": 7.3329,
981
+ "step": 132
982
+ },
983
+ {
984
+ "epoch": 1.48,
985
+ "eval_loss": 7.374873161315918,
986
+ "eval_runtime": 1.3815,
987
+ "eval_samples_per_second": 13.753,
988
+ "eval_steps_per_second": 3.619,
989
+ "step": 132
990
+ },
991
+ {
992
+ "epoch": 1.49,
993
+ "grad_norm": 10.89412121909016,
994
+ "learning_rate": 0.00017997432346737524,
995
+ "loss": 7.3277,
996
+ "step": 133
997
+ },
998
+ {
999
+ "epoch": 1.51,
1000
+ "grad_norm": 18.182727305484867,
1001
+ "learning_rate": 0.00017878772528529232,
1002
+ "loss": 7.3505,
1003
+ "step": 134
1004
+ },
1005
+ {
1006
+ "epoch": 1.52,
1007
+ "grad_norm": 18.738647279231998,
1008
+ "learning_rate": 0.000177571129070442,
1009
+ "loss": 7.4395,
1010
+ "step": 135
1011
+ },
1012
+ {
1013
+ "epoch": 1.53,
1014
+ "grad_norm": 8.544634593385059,
1015
+ "learning_rate": 0.00017632499803575474,
1016
+ "loss": 7.3132,
1017
+ "step": 136
1018
+ },
1019
+ {
1020
+ "epoch": 1.54,
1021
+ "grad_norm": 23.787945119488832,
1022
+ "learning_rate": 0.00017504980663939613,
1023
+ "loss": 7.3635,
1024
+ "step": 137
1025
+ },
1026
+ {
1027
+ "epoch": 1.55,
1028
+ "grad_norm": 15.988837162794528,
1029
+ "learning_rate": 0.00017374604040411935,
1030
+ "loss": 7.298,
1031
+ "step": 138
1032
+ },
1033
+ {
1034
+ "epoch": 1.56,
1035
+ "grad_norm": 8.594141503866256,
1036
+ "learning_rate": 0.00017241419573240462,
1037
+ "loss": 7.2263,
1038
+ "step": 139
1039
+ },
1040
+ {
1041
+ "epoch": 1.57,
1042
+ "grad_norm": 10.834111660116264,
1043
+ "learning_rate": 0.00017105477971745666,
1044
+ "loss": 7.2234,
1045
+ "step": 140
1046
+ },
1047
+ {
1048
+ "epoch": 1.59,
1049
+ "grad_norm": 20.898663112099943,
1050
+ "learning_rate": 0.00016966830995013133,
1051
+ "loss": 7.4312,
1052
+ "step": 141
1053
+ },
1054
+ {
1055
+ "epoch": 1.6,
1056
+ "grad_norm": 9.882602517532073,
1057
+ "learning_rate": 0.00016825531432186543,
1058
+ "loss": 7.3389,
1059
+ "step": 142
1060
+ },
1061
+ {
1062
+ "epoch": 1.61,
1063
+ "grad_norm": 7.435249821686469,
1064
+ "learning_rate": 0.00016681633082368498,
1065
+ "loss": 7.2015,
1066
+ "step": 143
1067
+ },
1068
+ {
1069
+ "epoch": 1.62,
1070
+ "grad_norm": 13.215068331486576,
1071
+ "learning_rate": 0.0001653519073413675,
1072
+ "loss": 7.1425,
1073
+ "step": 144
1074
+ },
1075
+ {
1076
+ "epoch": 1.63,
1077
+ "grad_norm": 11.754841557793458,
1078
+ "learning_rate": 0.00016386260144683745,
1079
+ "loss": 7.3101,
1080
+ "step": 145
1081
+ },
1082
+ {
1083
+ "epoch": 1.64,
1084
+ "grad_norm": 7.674786980372276,
1085
+ "learning_rate": 0.00016234898018587337,
1086
+ "loss": 7.1703,
1087
+ "step": 146
1088
+ },
1089
+ {
1090
+ "epoch": 1.66,
1091
+ "grad_norm": 8.30389279917059,
1092
+ "learning_rate": 0.00016081161986220807,
1093
+ "loss": 7.2516,
1094
+ "step": 147
1095
+ },
1096
+ {
1097
+ "epoch": 1.67,
1098
+ "grad_norm": 14.325137493545546,
1099
+ "learning_rate": 0.00015925110581810394,
1100
+ "loss": 7.3326,
1101
+ "step": 148
1102
+ },
1103
+ {
1104
+ "epoch": 1.68,
1105
+ "grad_norm": 9.943124774719692,
1106
+ "learning_rate": 0.00015766803221148673,
1107
+ "loss": 7.5501,
1108
+ "step": 149
1109
+ },
1110
+ {
1111
+ "epoch": 1.69,
1112
+ "grad_norm": 11.710815673357324,
1113
+ "learning_rate": 0.00015606300178972287,
1114
+ "loss": 7.3344,
1115
+ "step": 150
1116
+ },
1117
+ {
1118
+ "epoch": 1.7,
1119
+ "grad_norm": 8.287278539768234,
1120
+ "learning_rate": 0.00015443662566012645,
1121
+ "loss": 7.2426,
1122
+ "step": 151
1123
+ },
1124
+ {
1125
+ "epoch": 1.71,
1126
+ "grad_norm": 8.045767995001754,
1127
+ "learning_rate": 0.00015278952305728324,
1128
+ "loss": 7.2319,
1129
+ "step": 152
1130
+ },
1131
+ {
1132
+ "epoch": 1.72,
1133
+ "grad_norm": 16.213767636990735,
1134
+ "learning_rate": 0.00015112232110728015,
1135
+ "loss": 7.2226,
1136
+ "step": 153
1137
+ },
1138
+ {
1139
+ "epoch": 1.74,
1140
+ "grad_norm": 10.115986520778595,
1141
+ "learning_rate": 0.00014943565458893,
1142
+ "loss": 7.0671,
1143
+ "step": 154
1144
+ },
1145
+ {
1146
+ "epoch": 1.74,
1147
+ "eval_loss": 7.336472511291504,
1148
+ "eval_runtime": 1.3763,
1149
+ "eval_samples_per_second": 13.806,
1150
+ "eval_steps_per_second": 3.633,
1151
+ "step": 154
1152
+ },
1153
+ {
1154
+ "epoch": 1.75,
1155
+ "grad_norm": 7.370162670560762,
1156
+ "learning_rate": 0.00014773016569208283,
1157
+ "loss": 7.2456,
1158
+ "step": 155
1159
+ },
1160
+ {
1161
+ "epoch": 1.76,
1162
+ "grad_norm": 14.854609514494987,
1163
+ "learning_rate": 0.00014600650377311522,
1164
+ "loss": 7.0447,
1165
+ "step": 156
1166
+ },
1167
+ {
1168
+ "epoch": 1.77,
1169
+ "grad_norm": 9.984605765623492,
1170
+ "learning_rate": 0.0001442653251076912,
1171
+ "loss": 7.1948,
1172
+ "step": 157
1173
+ },
1174
+ {
1175
+ "epoch": 1.78,
1176
+ "grad_norm": 11.053561117527067,
1177
+ "learning_rate": 0.00014250729264088843,
1178
+ "loss": 7.1485,
1179
+ "step": 158
1180
+ },
1181
+ {
1182
+ "epoch": 1.79,
1183
+ "grad_norm": 11.604464862126479,
1184
+ "learning_rate": 0.00014073307573478526,
1185
+ "loss": 7.4198,
1186
+ "step": 159
1187
+ },
1188
+ {
1189
+ "epoch": 1.8,
1190
+ "grad_norm": 8.62267592810566,
1191
+ "learning_rate": 0.00013894334991360448,
1192
+ "loss": 7.3045,
1193
+ "step": 160
1194
+ },
1195
+ {
1196
+ "epoch": 1.82,
1197
+ "grad_norm": 10.961255591651343,
1198
+ "learning_rate": 0.00013713879660651068,
1199
+ "loss": 6.9983,
1200
+ "step": 161
1201
+ },
1202
+ {
1203
+ "epoch": 1.83,
1204
+ "grad_norm": 11.12104950103157,
1205
+ "learning_rate": 0.0001353201028881598,
1206
+ "loss": 7.1046,
1207
+ "step": 162
1208
+ },
1209
+ {
1210
+ "epoch": 1.84,
1211
+ "grad_norm": 8.807345567053673,
1212
+ "learning_rate": 0.00013348796121709862,
1213
+ "loss": 7.3378,
1214
+ "step": 163
1215
+ },
1216
+ {
1217
+ "epoch": 1.85,
1218
+ "grad_norm": 10.666053356976384,
1219
+ "learning_rate": 0.00013164306917211476,
1220
+ "loss": 7.0008,
1221
+ "step": 164
1222
+ },
1223
+ {
1224
+ "epoch": 1.86,
1225
+ "grad_norm": 7.835224761952429,
1226
+ "learning_rate": 0.000129786129186637,
1227
+ "loss": 6.9881,
1228
+ "step": 165
1229
+ },
1230
+ {
1231
+ "epoch": 1.87,
1232
+ "grad_norm": 19.4062633667929,
1233
+ "learning_rate": 0.00012791784828128724,
1234
+ "loss": 7.2579,
1235
+ "step": 166
1236
+ },
1237
+ {
1238
+ "epoch": 1.89,
1239
+ "grad_norm": 10.113263144537674,
1240
+ "learning_rate": 0.00012603893779468604,
1241
+ "loss": 7.3091,
1242
+ "step": 167
1243
+ },
1244
+ {
1245
+ "epoch": 1.9,
1246
+ "grad_norm": 10.870503515462726,
1247
+ "learning_rate": 0.0001241501131126138,
1248
+ "loss": 7.4527,
1249
+ "step": 168
1250
+ },
1251
+ {
1252
+ "epoch": 1.91,
1253
+ "grad_norm": 8.533887294828766,
1254
+ "learning_rate": 0.00012225209339563145,
1255
+ "loss": 7.2855,
1256
+ "step": 169
1257
+ },
1258
+ {
1259
+ "epoch": 1.92,
1260
+ "grad_norm": 13.486746604884923,
1261
+ "learning_rate": 0.0001203456013052634,
1262
+ "loss": 7.2705,
1263
+ "step": 170
1264
+ },
1265
+ {
1266
+ "epoch": 1.93,
1267
+ "grad_norm": 10.69251762526038,
1268
+ "learning_rate": 0.00011843136272884794,
1269
+ "loss": 7.0932,
1270
+ "step": 171
1271
+ },
1272
+ {
1273
+ "epoch": 1.94,
1274
+ "grad_norm": 9.124923914761991,
1275
+ "learning_rate": 0.00011651010650315923,
1276
+ "loss": 7.3754,
1277
+ "step": 172
1278
+ },
1279
+ {
1280
+ "epoch": 1.95,
1281
+ "grad_norm": 13.481473855966252,
1282
+ "learning_rate": 0.00011458256413690633,
1283
+ "loss": 7.3104,
1284
+ "step": 173
1285
+ },
1286
+ {
1287
+ "epoch": 1.97,
1288
+ "grad_norm": 13.187202052506544,
1289
+ "learning_rate": 0.00011264946953221496,
1290
+ "loss": 7.3614,
1291
+ "step": 174
1292
+ }
1293
+ ],
1294
+ "logging_steps": 1,
1295
+ "max_steps": 261,
1296
+ "num_input_tokens_seen": 0,
1297
+ "num_train_epochs": 3,
1298
+ "save_steps": 87,
1299
+ "total_flos": 1.2162710143343002e+17,
1300
+ "train_batch_size": 1,
1301
+ "trial_name": null,
1302
+ "trial_params": null
1303
+ }
checkpoint-174/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50b6bb5c490e8ef22b44507d2914da60c8e4f8c0f5671692c3b6485d1e90608
3
+ size 6395
checkpoint-174/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-261/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.38.0",
24
+ "use_cache": false,
25
+ "vocab_size": 32000
26
+ }
checkpoint-261/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.38.0"
7
+ }
checkpoint-261/global_step261/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9e894ca467d0c73041d1e16de366fb1601d4b7f663b96f9dee73cdcd36217c
3
+ size 21725204471
checkpoint-261/global_step261/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a9099d294f6558914ce9c10932240bb346ee76d393d1029f814cfda3ac23c26
3
+ size 21725205111
checkpoint-261/global_step261/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d0da12e540f5d78b442356be0e626094299e094fe03205d373dc868379a92aa
3
+ size 21725205111
checkpoint-261/global_step261/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc93f64204a586e12cb28e6a2cdbf812997662a01611a7719b67d4639c8cb628
3
+ size 21725204535
checkpoint-261/global_step261/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0779635d4d5861f77003df69765a486d96cf572c41481e59430cce5866f30f22
3
+ size 14483551747
checkpoint-261/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step261
checkpoint-261/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31c532f5ad94151c66aece624fdd79259c5d5f80540419098a7ed105e64a18a1
3
+ size 4943162336
checkpoint-261/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d76b471758354a6480eee81cb699f14ef71295c9d75ef0cefb9b197e04d1e82
3
+ size 4999819336
checkpoint-261/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f0b233e5eda8c7f368f67ddcfd233c19e82631b65ebaeadcd31deb162db3080
3
+ size 4540516344
checkpoint-261/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
checkpoint-261/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:926b70f6be2914cad151dafd0e3fa08f8277adb10199e8a7f2ff8aa53afc3223
3
+ size 17655
checkpoint-261/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0dcd6b2a15400db4e6e93af7cb8ba6e4e7e71f455c0122d4e3d19a0fef82b0a
3
+ size 17655
checkpoint-261/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:110606a79dab49d13dae27afec5afb7c2980f1440e4f9e7e66001b14e016dd7f
3
+ size 17655
checkpoint-261/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cba41cf1ae1502a93c8ba0d7ee52d2096158a0ee2d07bf8a606129bb127516a
3
+ size 17655
checkpoint-261/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67b1fbfe77e71f3535424c43de07cc0ffaacb05756dac4b0d55425ed3a2df41f
3
+ size 627
checkpoint-261/trainer_state.json ADDED
@@ -0,0 +1,1944 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.942528735632184,
5
+ "eval_steps": 22,
6
+ "global_step": 261,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 19.59183260405101,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "loss": 1.3985,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "eval_loss": 1.5676738023757935,
21
+ "eval_runtime": 3.9227,
22
+ "eval_samples_per_second": 4.844,
23
+ "eval_steps_per_second": 1.275,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.02,
28
+ "grad_norm": 25.857640141956836,
29
+ "learning_rate": 4.000000000000001e-06,
30
+ "loss": 1.6073,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.03,
35
+ "grad_norm": 19.53747244629775,
36
+ "learning_rate": 6e-06,
37
+ "loss": 1.5784,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.05,
42
+ "grad_norm": 32.1611390841105,
43
+ "learning_rate": 8.000000000000001e-06,
44
+ "loss": 1.4924,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "grad_norm": 25.68491589990429,
50
+ "learning_rate": 1e-05,
51
+ "loss": 1.5215,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.07,
56
+ "grad_norm": 21.800722806654328,
57
+ "learning_rate": 1.2e-05,
58
+ "loss": 1.5508,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.08,
63
+ "grad_norm": 17.19812526688047,
64
+ "learning_rate": 1.4000000000000001e-05,
65
+ "loss": 1.205,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.09,
70
+ "grad_norm": 33.24510948526866,
71
+ "learning_rate": 1.6000000000000003e-05,
72
+ "loss": 1.6376,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1,
77
+ "grad_norm": 14.986129451187,
78
+ "learning_rate": 1.8e-05,
79
+ "loss": 1.454,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.11,
84
+ "grad_norm": 17.517194747344856,
85
+ "learning_rate": 2e-05,
86
+ "loss": 1.6559,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.13,
91
+ "grad_norm": 18.22606604955052,
92
+ "learning_rate": 2.2000000000000003e-05,
93
+ "loss": 1.5816,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.14,
98
+ "grad_norm": 26.577328122239592,
99
+ "learning_rate": 2.4e-05,
100
+ "loss": 1.7884,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.15,
105
+ "grad_norm": 17.563463503652706,
106
+ "learning_rate": 2.6000000000000002e-05,
107
+ "loss": 1.4405,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.16,
112
+ "grad_norm": 19.98739837372538,
113
+ "learning_rate": 2.8000000000000003e-05,
114
+ "loss": 1.7512,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.17,
119
+ "grad_norm": 16.25364292099236,
120
+ "learning_rate": 3e-05,
121
+ "loss": 1.7037,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.18,
126
+ "grad_norm": 22.328347783615648,
127
+ "learning_rate": 3.2000000000000005e-05,
128
+ "loss": 1.5476,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.2,
133
+ "grad_norm": 20.71265405702363,
134
+ "learning_rate": 3.4000000000000007e-05,
135
+ "loss": 1.8108,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.21,
140
+ "grad_norm": 22.425069186679085,
141
+ "learning_rate": 3.6e-05,
142
+ "loss": 1.6751,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.22,
147
+ "grad_norm": 18.646553829771403,
148
+ "learning_rate": 3.8e-05,
149
+ "loss": 1.7696,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.23,
154
+ "grad_norm": 16.74801305116847,
155
+ "learning_rate": 4e-05,
156
+ "loss": 1.7699,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.24,
161
+ "grad_norm": 30.99364381661585,
162
+ "learning_rate": 4.2e-05,
163
+ "loss": 2.1827,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.25,
168
+ "grad_norm": 19.761245037191404,
169
+ "learning_rate": 4.4000000000000006e-05,
170
+ "loss": 1.4776,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.25,
175
+ "eval_loss": 1.856759786605835,
176
+ "eval_runtime": 1.4309,
177
+ "eval_samples_per_second": 13.279,
178
+ "eval_steps_per_second": 3.494,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.26,
183
+ "grad_norm": 27.821861354666428,
184
+ "learning_rate": 4.600000000000001e-05,
185
+ "loss": 1.8677,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.28,
190
+ "grad_norm": 22.80354998875929,
191
+ "learning_rate": 4.8e-05,
192
+ "loss": 1.7424,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.29,
197
+ "grad_norm": 19.920321630615994,
198
+ "learning_rate": 5e-05,
199
+ "loss": 1.769,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.3,
204
+ "grad_norm": 23.82621534355921,
205
+ "learning_rate": 5.2000000000000004e-05,
206
+ "loss": 1.8615,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.31,
211
+ "grad_norm": 27.63826215875828,
212
+ "learning_rate": 5.4000000000000005e-05,
213
+ "loss": 1.7164,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.32,
218
+ "grad_norm": 30.810269474286084,
219
+ "learning_rate": 5.6000000000000006e-05,
220
+ "loss": 1.8922,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.33,
225
+ "grad_norm": 23.279443617002265,
226
+ "learning_rate": 5.8e-05,
227
+ "loss": 1.8507,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.34,
232
+ "grad_norm": 18.091756285883704,
233
+ "learning_rate": 6e-05,
234
+ "loss": 1.6537,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.36,
239
+ "grad_norm": 23.292568819411724,
240
+ "learning_rate": 6.2e-05,
241
+ "loss": 1.9125,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.37,
246
+ "grad_norm": 52.21913805211888,
247
+ "learning_rate": 6.400000000000001e-05,
248
+ "loss": 1.8456,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.38,
253
+ "grad_norm": 30.771918199992527,
254
+ "learning_rate": 6.6e-05,
255
+ "loss": 1.9398,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.39,
260
+ "grad_norm": 40.19880102087157,
261
+ "learning_rate": 6.800000000000001e-05,
262
+ "loss": 2.3763,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.4,
267
+ "grad_norm": 28.33779955799431,
268
+ "learning_rate": 7e-05,
269
+ "loss": 2.0815,
270
+ "step": 35
271
+ },
272
+ {
273
+ "epoch": 0.41,
274
+ "grad_norm": 54.379783823327905,
275
+ "learning_rate": 7.2e-05,
276
+ "loss": 2.1032,
277
+ "step": 36
278
+ },
279
+ {
280
+ "epoch": 0.43,
281
+ "grad_norm": 662.6041427579516,
282
+ "learning_rate": 7.4e-05,
283
+ "loss": 3.5917,
284
+ "step": 37
285
+ },
286
+ {
287
+ "epoch": 0.44,
288
+ "grad_norm": 4011.501090614335,
289
+ "learning_rate": 7.6e-05,
290
+ "loss": 7.3933,
291
+ "step": 38
292
+ },
293
+ {
294
+ "epoch": 0.45,
295
+ "grad_norm": 753.5816146908044,
296
+ "learning_rate": 7.800000000000001e-05,
297
+ "loss": 15.8371,
298
+ "step": 39
299
+ },
300
+ {
301
+ "epoch": 0.46,
302
+ "grad_norm": 291.86609997137384,
303
+ "learning_rate": 8e-05,
304
+ "loss": 9.0249,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.47,
309
+ "grad_norm": 922.0326051718562,
310
+ "learning_rate": 8.2e-05,
311
+ "loss": 9.8922,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.48,
316
+ "grad_norm": 115.68135873083658,
317
+ "learning_rate": 8.4e-05,
318
+ "loss": 8.2719,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.49,
323
+ "grad_norm": 693.1702757980898,
324
+ "learning_rate": 8.6e-05,
325
+ "loss": 24.1699,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.51,
330
+ "grad_norm": 219.78828591396768,
331
+ "learning_rate": 8.800000000000001e-05,
332
+ "loss": 10.1246,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.51,
337
+ "eval_loss": 8.758976936340332,
338
+ "eval_runtime": 1.3819,
339
+ "eval_samples_per_second": 13.749,
340
+ "eval_steps_per_second": 3.618,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.52,
345
+ "grad_norm": 101.32256273283853,
346
+ "learning_rate": 9e-05,
347
+ "loss": 9.1756,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.53,
352
+ "grad_norm": 11.958039992364316,
353
+ "learning_rate": 9.200000000000001e-05,
354
+ "loss": 7.7273,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.54,
359
+ "grad_norm": 3232.8188937829473,
360
+ "learning_rate": 9.4e-05,
361
+ "loss": 8.7486,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.55,
366
+ "grad_norm": 34.97640980952823,
367
+ "learning_rate": 9.6e-05,
368
+ "loss": 8.0394,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.56,
373
+ "grad_norm": 28.785233378323184,
374
+ "learning_rate": 9.8e-05,
375
+ "loss": 7.6241,
376
+ "step": 49
377
+ },
378
+ {
379
+ "epoch": 0.57,
380
+ "grad_norm": 734.1733446536996,
381
+ "learning_rate": 0.0001,
382
+ "loss": 7.7813,
383
+ "step": 50
384
+ },
385
+ {
386
+ "epoch": 0.59,
387
+ "grad_norm": 59.66290191764372,
388
+ "learning_rate": 0.00010200000000000001,
389
+ "loss": 7.6734,
390
+ "step": 51
391
+ },
392
+ {
393
+ "epoch": 0.6,
394
+ "grad_norm": 18.23606863385719,
395
+ "learning_rate": 0.00010400000000000001,
396
+ "loss": 7.8783,
397
+ "step": 52
398
+ },
399
+ {
400
+ "epoch": 0.61,
401
+ "grad_norm": 15.152500341579357,
402
+ "learning_rate": 0.00010600000000000002,
403
+ "loss": 7.6016,
404
+ "step": 53
405
+ },
406
+ {
407
+ "epoch": 0.62,
408
+ "grad_norm": 25.1062172290986,
409
+ "learning_rate": 0.00010800000000000001,
410
+ "loss": 7.7206,
411
+ "step": 54
412
+ },
413
+ {
414
+ "epoch": 0.63,
415
+ "grad_norm": 30.75760910048317,
416
+ "learning_rate": 0.00011000000000000002,
417
+ "loss": 7.7526,
418
+ "step": 55
419
+ },
420
+ {
421
+ "epoch": 0.64,
422
+ "grad_norm": 18.354297835205724,
423
+ "learning_rate": 0.00011200000000000001,
424
+ "loss": 7.5551,
425
+ "step": 56
426
+ },
427
+ {
428
+ "epoch": 0.66,
429
+ "grad_norm": 32.48061320811231,
430
+ "learning_rate": 0.00011399999999999999,
431
+ "loss": 7.6922,
432
+ "step": 57
433
+ },
434
+ {
435
+ "epoch": 0.67,
436
+ "grad_norm": 26.624723764338736,
437
+ "learning_rate": 0.000116,
438
+ "loss": 7.5791,
439
+ "step": 58
440
+ },
441
+ {
442
+ "epoch": 0.68,
443
+ "grad_norm": 13.92226298912218,
444
+ "learning_rate": 0.000118,
445
+ "loss": 7.3692,
446
+ "step": 59
447
+ },
448
+ {
449
+ "epoch": 0.69,
450
+ "grad_norm": 15.428105634893914,
451
+ "learning_rate": 0.00012,
452
+ "loss": 7.564,
453
+ "step": 60
454
+ },
455
+ {
456
+ "epoch": 0.7,
457
+ "grad_norm": 23.02235056392551,
458
+ "learning_rate": 0.000122,
459
+ "loss": 7.3948,
460
+ "step": 61
461
+ },
462
+ {
463
+ "epoch": 0.71,
464
+ "grad_norm": 16.470374126805776,
465
+ "learning_rate": 0.000124,
466
+ "loss": 7.4646,
467
+ "step": 62
468
+ },
469
+ {
470
+ "epoch": 0.72,
471
+ "grad_norm": 19.574553557429,
472
+ "learning_rate": 0.000126,
473
+ "loss": 7.3902,
474
+ "step": 63
475
+ },
476
+ {
477
+ "epoch": 0.74,
478
+ "grad_norm": 25.549182808604662,
479
+ "learning_rate": 0.00012800000000000002,
480
+ "loss": 7.5461,
481
+ "step": 64
482
+ },
483
+ {
484
+ "epoch": 0.75,
485
+ "grad_norm": 618.1147749407063,
486
+ "learning_rate": 0.00013000000000000002,
487
+ "loss": 8.157,
488
+ "step": 65
489
+ },
490
+ {
491
+ "epoch": 0.76,
492
+ "grad_norm": 66.0610660913446,
493
+ "learning_rate": 0.000132,
494
+ "loss": 8.1284,
495
+ "step": 66
496
+ },
497
+ {
498
+ "epoch": 0.76,
499
+ "eval_loss": 8.004860877990723,
500
+ "eval_runtime": 1.3748,
501
+ "eval_samples_per_second": 13.82,
502
+ "eval_steps_per_second": 3.637,
503
+ "step": 66
504
+ },
505
+ {
506
+ "epoch": 0.77,
507
+ "grad_norm": 41.635960690924975,
508
+ "learning_rate": 0.000134,
509
+ "loss": 8.0602,
510
+ "step": 67
511
+ },
512
+ {
513
+ "epoch": 0.78,
514
+ "grad_norm": 16.679869546723175,
515
+ "learning_rate": 0.00013600000000000003,
516
+ "loss": 7.8268,
517
+ "step": 68
518
+ },
519
+ {
520
+ "epoch": 0.79,
521
+ "grad_norm": 33.70142265056291,
522
+ "learning_rate": 0.000138,
523
+ "loss": 8.1206,
524
+ "step": 69
525
+ },
526
+ {
527
+ "epoch": 0.8,
528
+ "grad_norm": 43.29315748881759,
529
+ "learning_rate": 0.00014,
530
+ "loss": 7.7882,
531
+ "step": 70
532
+ },
533
+ {
534
+ "epoch": 0.82,
535
+ "grad_norm": 28.3799834727588,
536
+ "learning_rate": 0.000142,
537
+ "loss": 7.5454,
538
+ "step": 71
539
+ },
540
+ {
541
+ "epoch": 0.83,
542
+ "grad_norm": 30.911781055251613,
543
+ "learning_rate": 0.000144,
544
+ "loss": 7.7616,
545
+ "step": 72
546
+ },
547
+ {
548
+ "epoch": 0.84,
549
+ "grad_norm": 56.741836296758365,
550
+ "learning_rate": 0.000146,
551
+ "loss": 8.1145,
552
+ "step": 73
553
+ },
554
+ {
555
+ "epoch": 0.85,
556
+ "grad_norm": 13.967249574234195,
557
+ "learning_rate": 0.000148,
558
+ "loss": 7.6758,
559
+ "step": 74
560
+ },
561
+ {
562
+ "epoch": 0.86,
563
+ "grad_norm": 42.28071588262047,
564
+ "learning_rate": 0.00015000000000000001,
565
+ "loss": 7.5507,
566
+ "step": 75
567
+ },
568
+ {
569
+ "epoch": 0.87,
570
+ "grad_norm": 27.40577229308579,
571
+ "learning_rate": 0.000152,
572
+ "loss": 7.6852,
573
+ "step": 76
574
+ },
575
+ {
576
+ "epoch": 0.89,
577
+ "grad_norm": 21.422615778584905,
578
+ "learning_rate": 0.000154,
579
+ "loss": 7.6071,
580
+ "step": 77
581
+ },
582
+ {
583
+ "epoch": 0.9,
584
+ "grad_norm": 28.22569647336005,
585
+ "learning_rate": 0.00015600000000000002,
586
+ "loss": 7.5556,
587
+ "step": 78
588
+ },
589
+ {
590
+ "epoch": 0.91,
591
+ "grad_norm": 20.075502929468385,
592
+ "learning_rate": 0.00015800000000000002,
593
+ "loss": 7.529,
594
+ "step": 79
595
+ },
596
+ {
597
+ "epoch": 0.92,
598
+ "grad_norm": 14.896626626967638,
599
+ "learning_rate": 0.00016,
600
+ "loss": 7.5352,
601
+ "step": 80
602
+ },
603
+ {
604
+ "epoch": 0.93,
605
+ "grad_norm": 16.98565517398293,
606
+ "learning_rate": 0.000162,
607
+ "loss": 7.5734,
608
+ "step": 81
609
+ },
610
+ {
611
+ "epoch": 0.94,
612
+ "grad_norm": 17.76803489316823,
613
+ "learning_rate": 0.000164,
614
+ "loss": 7.591,
615
+ "step": 82
616
+ },
617
+ {
618
+ "epoch": 0.95,
619
+ "grad_norm": 15.601674972992182,
620
+ "learning_rate": 0.000166,
621
+ "loss": 7.4251,
622
+ "step": 83
623
+ },
624
+ {
625
+ "epoch": 0.97,
626
+ "grad_norm": 21.36580777081032,
627
+ "learning_rate": 0.000168,
628
+ "loss": 7.728,
629
+ "step": 84
630
+ },
631
+ {
632
+ "epoch": 0.98,
633
+ "grad_norm": 19.73380900316605,
634
+ "learning_rate": 0.00017,
635
+ "loss": 7.3548,
636
+ "step": 85
637
+ },
638
+ {
639
+ "epoch": 0.99,
640
+ "grad_norm": 16.40313028374367,
641
+ "learning_rate": 0.000172,
642
+ "loss": 7.3652,
643
+ "step": 86
644
+ },
645
+ {
646
+ "epoch": 1.0,
647
+ "grad_norm": 11.846265862818466,
648
+ "learning_rate": 0.000174,
649
+ "loss": 7.4363,
650
+ "step": 87
651
+ },
652
+ {
653
+ "epoch": 1.01,
654
+ "grad_norm": 11.82176337757903,
655
+ "learning_rate": 0.00017600000000000002,
656
+ "loss": 7.3967,
657
+ "step": 88
658
+ },
659
+ {
660
+ "epoch": 1.01,
661
+ "eval_loss": 7.461406707763672,
662
+ "eval_runtime": 1.3867,
663
+ "eval_samples_per_second": 13.702,
664
+ "eval_steps_per_second": 3.606,
665
+ "step": 88
666
+ },
667
+ {
668
+ "epoch": 1.02,
669
+ "grad_norm": 14.25806078550941,
670
+ "learning_rate": 0.00017800000000000002,
671
+ "loss": 7.3814,
672
+ "step": 89
673
+ },
674
+ {
675
+ "epoch": 1.03,
676
+ "grad_norm": 10.077089336320658,
677
+ "learning_rate": 0.00018,
678
+ "loss": 7.2599,
679
+ "step": 90
680
+ },
681
+ {
682
+ "epoch": 1.01,
683
+ "grad_norm": 15.159363102480643,
684
+ "learning_rate": 0.000182,
685
+ "loss": 7.5719,
686
+ "step": 91
687
+ },
688
+ {
689
+ "epoch": 1.02,
690
+ "grad_norm": 14.678683877513562,
691
+ "learning_rate": 0.00018400000000000003,
692
+ "loss": 7.4794,
693
+ "step": 92
694
+ },
695
+ {
696
+ "epoch": 1.03,
697
+ "grad_norm": 16.396549401486602,
698
+ "learning_rate": 0.00018600000000000002,
699
+ "loss": 7.6211,
700
+ "step": 93
701
+ },
702
+ {
703
+ "epoch": 1.05,
704
+ "grad_norm": 15.078668930441678,
705
+ "learning_rate": 0.000188,
706
+ "loss": 7.3625,
707
+ "step": 94
708
+ },
709
+ {
710
+ "epoch": 1.06,
711
+ "grad_norm": 13.546080322892589,
712
+ "learning_rate": 0.00019,
713
+ "loss": 7.3016,
714
+ "step": 95
715
+ },
716
+ {
717
+ "epoch": 1.07,
718
+ "grad_norm": 18.231949750348118,
719
+ "learning_rate": 0.000192,
720
+ "loss": 7.386,
721
+ "step": 96
722
+ },
723
+ {
724
+ "epoch": 1.08,
725
+ "grad_norm": 12.444086372431334,
726
+ "learning_rate": 0.000194,
727
+ "loss": 7.5534,
728
+ "step": 97
729
+ },
730
+ {
731
+ "epoch": 1.09,
732
+ "grad_norm": 9.994459143045797,
733
+ "learning_rate": 0.000196,
734
+ "loss": 7.4254,
735
+ "step": 98
736
+ },
737
+ {
738
+ "epoch": 1.1,
739
+ "grad_norm": 14.889247706503676,
740
+ "learning_rate": 0.00019800000000000002,
741
+ "loss": 7.3938,
742
+ "step": 99
743
+ },
744
+ {
745
+ "epoch": 1.11,
746
+ "grad_norm": 19.194847464605004,
747
+ "learning_rate": 0.0002,
748
+ "loss": 7.3875,
749
+ "step": 100
750
+ },
751
+ {
752
+ "epoch": 1.13,
753
+ "grad_norm": 19.234057674068023,
754
+ "learning_rate": 0.00019998096274980728,
755
+ "loss": 7.348,
756
+ "step": 101
757
+ },
758
+ {
759
+ "epoch": 1.14,
760
+ "grad_norm": 10.248320279074052,
761
+ "learning_rate": 0.000199923858247567,
762
+ "loss": 7.2365,
763
+ "step": 102
764
+ },
765
+ {
766
+ "epoch": 1.15,
767
+ "grad_norm": 15.579201434411983,
768
+ "learning_rate": 0.00019982870823553308,
769
+ "loss": 7.2351,
770
+ "step": 103
771
+ },
772
+ {
773
+ "epoch": 1.16,
774
+ "grad_norm": 10.951732160571428,
775
+ "learning_rate": 0.00019969554894159723,
776
+ "loss": 7.4413,
777
+ "step": 104
778
+ },
779
+ {
780
+ "epoch": 1.17,
781
+ "grad_norm": 12.034336556190219,
782
+ "learning_rate": 0.00019952443106549533,
783
+ "loss": 7.4256,
784
+ "step": 105
785
+ },
786
+ {
787
+ "epoch": 1.18,
788
+ "grad_norm": 11.555864069154051,
789
+ "learning_rate": 0.00019931541975950378,
790
+ "loss": 7.0947,
791
+ "step": 106
792
+ },
793
+ {
794
+ "epoch": 1.2,
795
+ "grad_norm": 8.079125584036722,
796
+ "learning_rate": 0.00019906859460363307,
797
+ "loss": 7.3727,
798
+ "step": 107
799
+ },
800
+ {
801
+ "epoch": 1.21,
802
+ "grad_norm": 10.901301706963714,
803
+ "learning_rate": 0.00019878404957532814,
804
+ "loss": 7.2419,
805
+ "step": 108
806
+ },
807
+ {
808
+ "epoch": 1.22,
809
+ "grad_norm": 9.771076993744128,
810
+ "learning_rate": 0.0001984618930136869,
811
+ "loss": 7.2896,
812
+ "step": 109
813
+ },
814
+ {
815
+ "epoch": 1.23,
816
+ "grad_norm": 11.395240298688034,
817
+ "learning_rate": 0.00019810224757821064,
818
+ "loss": 7.2567,
819
+ "step": 110
820
+ },
821
+ {
822
+ "epoch": 1.23,
823
+ "eval_loss": 7.299312591552734,
824
+ "eval_runtime": 1.381,
825
+ "eval_samples_per_second": 13.758,
826
+ "eval_steps_per_second": 3.621,
827
+ "step": 110
828
+ },
829
+ {
830
+ "epoch": 1.24,
831
+ "grad_norm": 11.839939762683946,
832
+ "learning_rate": 0.00019770525020210204,
833
+ "loss": 7.3145,
834
+ "step": 111
835
+ },
836
+ {
837
+ "epoch": 1.25,
838
+ "grad_norm": 13.454044820108352,
839
+ "learning_rate": 0.0001972710520401287,
840
+ "loss": 7.3279,
841
+ "step": 112
842
+ },
843
+ {
844
+ "epoch": 1.26,
845
+ "grad_norm": 10.349510041217494,
846
+ "learning_rate": 0.0001967998184110713,
847
+ "loss": 7.0995,
848
+ "step": 113
849
+ },
850
+ {
851
+ "epoch": 1.28,
852
+ "grad_norm": 11.299695940906268,
853
+ "learning_rate": 0.00019629172873477995,
854
+ "loss": 7.1545,
855
+ "step": 114
856
+ },
857
+ {
858
+ "epoch": 1.29,
859
+ "grad_norm": 10.300523126150598,
860
+ "learning_rate": 0.00019574697646386027,
861
+ "loss": 7.2619,
862
+ "step": 115
863
+ },
864
+ {
865
+ "epoch": 1.3,
866
+ "grad_norm": 12.280692750358627,
867
+ "learning_rate": 0.0001951657690100178,
868
+ "loss": 7.4703,
869
+ "step": 116
870
+ },
871
+ {
872
+ "epoch": 1.31,
873
+ "grad_norm": 11.308344462386193,
874
+ "learning_rate": 0.0001945483276650868,
875
+ "loss": 7.2927,
876
+ "step": 117
877
+ },
878
+ {
879
+ "epoch": 1.32,
880
+ "grad_norm": 9.46182612207882,
881
+ "learning_rate": 0.0001938948875167745,
882
+ "loss": 7.1097,
883
+ "step": 118
884
+ },
885
+ {
886
+ "epoch": 1.33,
887
+ "grad_norm": 8.495214573764272,
888
+ "learning_rate": 0.00019320569735915271,
889
+ "loss": 7.2199,
890
+ "step": 119
891
+ },
892
+ {
893
+ "epoch": 1.34,
894
+ "grad_norm": 10.888318204738358,
895
+ "learning_rate": 0.00019248101959793066,
896
+ "loss": 7.4214,
897
+ "step": 120
898
+ },
899
+ {
900
+ "epoch": 1.36,
901
+ "grad_norm": 15.655909856272627,
902
+ "learning_rate": 0.00019172113015054532,
903
+ "loss": 7.4141,
904
+ "step": 121
905
+ },
906
+ {
907
+ "epoch": 1.37,
908
+ "grad_norm": 14.348570302527095,
909
+ "learning_rate": 0.00019092631834110723,
910
+ "loss": 7.2034,
911
+ "step": 122
912
+ },
913
+ {
914
+ "epoch": 1.38,
915
+ "grad_norm": 11.216620878113865,
916
+ "learning_rate": 0.0001900968867902419,
917
+ "loss": 7.1925,
918
+ "step": 123
919
+ },
920
+ {
921
+ "epoch": 1.39,
922
+ "grad_norm": 15.214529842718143,
923
+ "learning_rate": 0.00018923315129986835,
924
+ "loss": 7.204,
925
+ "step": 124
926
+ },
927
+ {
928
+ "epoch": 1.4,
929
+ "grad_norm": 24.933551829531577,
930
+ "learning_rate": 0.00018833544073295917,
931
+ "loss": 7.5231,
932
+ "step": 125
933
+ },
934
+ {
935
+ "epoch": 1.41,
936
+ "grad_norm": 12.291980045440198,
937
+ "learning_rate": 0.00018740409688832764,
938
+ "loss": 7.2323,
939
+ "step": 126
940
+ },
941
+ {
942
+ "epoch": 1.43,
943
+ "grad_norm": 19.503396545387695,
944
+ "learning_rate": 0.00018643947437048944,
945
+ "loss": 7.3214,
946
+ "step": 127
947
+ },
948
+ {
949
+ "epoch": 1.44,
950
+ "grad_norm": 13.982404823681808,
951
+ "learning_rate": 0.00018544194045464886,
952
+ "loss": 7.4008,
953
+ "step": 128
954
+ },
955
+ {
956
+ "epoch": 1.45,
957
+ "grad_norm": 13.775851829485163,
958
+ "learning_rate": 0.00018441187494686053,
959
+ "loss": 7.2854,
960
+ "step": 129
961
+ },
962
+ {
963
+ "epoch": 1.46,
964
+ "grad_norm": 16.44073199273777,
965
+ "learning_rate": 0.0001833496700394202,
966
+ "loss": 7.4218,
967
+ "step": 130
968
+ },
969
+ {
970
+ "epoch": 1.47,
971
+ "grad_norm": 21.66328419423237,
972
+ "learning_rate": 0.00018225573016153945,
973
+ "loss": 7.3589,
974
+ "step": 131
975
+ },
976
+ {
977
+ "epoch": 1.48,
978
+ "grad_norm": 14.027278482513156,
979
+ "learning_rate": 0.00018113047182536127,
980
+ "loss": 7.3329,
981
+ "step": 132
982
+ },
983
+ {
984
+ "epoch": 1.48,
985
+ "eval_loss": 7.374873161315918,
986
+ "eval_runtime": 1.3815,
987
+ "eval_samples_per_second": 13.753,
988
+ "eval_steps_per_second": 3.619,
989
+ "step": 132
990
+ },
991
+ {
992
+ "epoch": 1.49,
993
+ "grad_norm": 10.89412121909016,
994
+ "learning_rate": 0.00017997432346737524,
995
+ "loss": 7.3277,
996
+ "step": 133
997
+ },
998
+ {
999
+ "epoch": 1.51,
1000
+ "grad_norm": 18.182727305484867,
1001
+ "learning_rate": 0.00017878772528529232,
1002
+ "loss": 7.3505,
1003
+ "step": 134
1004
+ },
1005
+ {
1006
+ "epoch": 1.52,
1007
+ "grad_norm": 18.738647279231998,
1008
+ "learning_rate": 0.000177571129070442,
1009
+ "loss": 7.4395,
1010
+ "step": 135
1011
+ },
1012
+ {
1013
+ "epoch": 1.53,
1014
+ "grad_norm": 8.544634593385059,
1015
+ "learning_rate": 0.00017632499803575474,
1016
+ "loss": 7.3132,
1017
+ "step": 136
1018
+ },
1019
+ {
1020
+ "epoch": 1.54,
1021
+ "grad_norm": 23.787945119488832,
1022
+ "learning_rate": 0.00017504980663939613,
1023
+ "loss": 7.3635,
1024
+ "step": 137
1025
+ },
1026
+ {
1027
+ "epoch": 1.55,
1028
+ "grad_norm": 15.988837162794528,
1029
+ "learning_rate": 0.00017374604040411935,
1030
+ "loss": 7.298,
1031
+ "step": 138
1032
+ },
1033
+ {
1034
+ "epoch": 1.56,
1035
+ "grad_norm": 8.594141503866256,
1036
+ "learning_rate": 0.00017241419573240462,
1037
+ "loss": 7.2263,
1038
+ "step": 139
1039
+ },
1040
+ {
1041
+ "epoch": 1.57,
1042
+ "grad_norm": 10.834111660116264,
1043
+ "learning_rate": 0.00017105477971745666,
1044
+ "loss": 7.2234,
1045
+ "step": 140
1046
+ },
1047
+ {
1048
+ "epoch": 1.59,
1049
+ "grad_norm": 20.898663112099943,
1050
+ "learning_rate": 0.00016966830995013133,
1051
+ "loss": 7.4312,
1052
+ "step": 141
1053
+ },
1054
+ {
1055
+ "epoch": 1.6,
1056
+ "grad_norm": 9.882602517532073,
1057
+ "learning_rate": 0.00016825531432186543,
1058
+ "loss": 7.3389,
1059
+ "step": 142
1060
+ },
1061
+ {
1062
+ "epoch": 1.61,
1063
+ "grad_norm": 7.435249821686469,
1064
+ "learning_rate": 0.00016681633082368498,
1065
+ "loss": 7.2015,
1066
+ "step": 143
1067
+ },
1068
+ {
1069
+ "epoch": 1.62,
1070
+ "grad_norm": 13.215068331486576,
1071
+ "learning_rate": 0.0001653519073413675,
1072
+ "loss": 7.1425,
1073
+ "step": 144
1074
+ },
1075
+ {
1076
+ "epoch": 1.63,
1077
+ "grad_norm": 11.754841557793458,
1078
+ "learning_rate": 0.00016386260144683745,
1079
+ "loss": 7.3101,
1080
+ "step": 145
1081
+ },
1082
+ {
1083
+ "epoch": 1.64,
1084
+ "grad_norm": 7.674786980372276,
1085
+ "learning_rate": 0.00016234898018587337,
1086
+ "loss": 7.1703,
1087
+ "step": 146
1088
+ },
1089
+ {
1090
+ "epoch": 1.66,
1091
+ "grad_norm": 8.30389279917059,
1092
+ "learning_rate": 0.00016081161986220807,
1093
+ "loss": 7.2516,
1094
+ "step": 147
1095
+ },
1096
+ {
1097
+ "epoch": 1.67,
1098
+ "grad_norm": 14.325137493545546,
1099
+ "learning_rate": 0.00015925110581810394,
1100
+ "loss": 7.3326,
1101
+ "step": 148
1102
+ },
1103
+ {
1104
+ "epoch": 1.68,
1105
+ "grad_norm": 9.943124774719692,
1106
+ "learning_rate": 0.00015766803221148673,
1107
+ "loss": 7.5501,
1108
+ "step": 149
1109
+ },
1110
+ {
1111
+ "epoch": 1.69,
1112
+ "grad_norm": 11.710815673357324,
1113
+ "learning_rate": 0.00015606300178972287,
1114
+ "loss": 7.3344,
1115
+ "step": 150
1116
+ },
1117
+ {
1118
+ "epoch": 1.7,
1119
+ "grad_norm": 8.287278539768234,
1120
+ "learning_rate": 0.00015443662566012645,
1121
+ "loss": 7.2426,
1122
+ "step": 151
1123
+ },
1124
+ {
1125
+ "epoch": 1.71,
1126
+ "grad_norm": 8.045767995001754,
1127
+ "learning_rate": 0.00015278952305728324,
1128
+ "loss": 7.2319,
1129
+ "step": 152
1130
+ },
1131
+ {
1132
+ "epoch": 1.72,
1133
+ "grad_norm": 16.213767636990735,
1134
+ "learning_rate": 0.00015112232110728015,
1135
+ "loss": 7.2226,
1136
+ "step": 153
1137
+ },
1138
+ {
1139
+ "epoch": 1.74,
1140
+ "grad_norm": 10.115986520778595,
1141
+ "learning_rate": 0.00014943565458893,
1142
+ "loss": 7.0671,
1143
+ "step": 154
1144
+ },
1145
+ {
1146
+ "epoch": 1.74,
1147
+ "eval_loss": 7.336472511291504,
1148
+ "eval_runtime": 1.3763,
1149
+ "eval_samples_per_second": 13.806,
1150
+ "eval_steps_per_second": 3.633,
1151
+ "step": 154
1152
+ },
1153
+ {
1154
+ "epoch": 1.75,
1155
+ "grad_norm": 7.370162670560762,
1156
+ "learning_rate": 0.00014773016569208283,
1157
+ "loss": 7.2456,
1158
+ "step": 155
1159
+ },
1160
+ {
1161
+ "epoch": 1.76,
1162
+ "grad_norm": 14.854609514494987,
1163
+ "learning_rate": 0.00014600650377311522,
1164
+ "loss": 7.0447,
1165
+ "step": 156
1166
+ },
1167
+ {
1168
+ "epoch": 1.77,
1169
+ "grad_norm": 9.984605765623492,
1170
+ "learning_rate": 0.0001442653251076912,
1171
+ "loss": 7.1948,
1172
+ "step": 157
1173
+ },
1174
+ {
1175
+ "epoch": 1.78,
1176
+ "grad_norm": 11.053561117527067,
1177
+ "learning_rate": 0.00014250729264088843,
1178
+ "loss": 7.1485,
1179
+ "step": 158
1180
+ },
1181
+ {
1182
+ "epoch": 1.79,
1183
+ "grad_norm": 11.604464862126479,
1184
+ "learning_rate": 0.00014073307573478526,
1185
+ "loss": 7.4198,
1186
+ "step": 159
1187
+ },
1188
+ {
1189
+ "epoch": 1.8,
1190
+ "grad_norm": 8.62267592810566,
1191
+ "learning_rate": 0.00013894334991360448,
1192
+ "loss": 7.3045,
1193
+ "step": 160
1194
+ },
1195
+ {
1196
+ "epoch": 1.82,
1197
+ "grad_norm": 10.961255591651343,
1198
+ "learning_rate": 0.00013713879660651068,
1199
+ "loss": 6.9983,
1200
+ "step": 161
1201
+ },
1202
+ {
1203
+ "epoch": 1.83,
1204
+ "grad_norm": 11.12104950103157,
1205
+ "learning_rate": 0.0001353201028881598,
1206
+ "loss": 7.1046,
1207
+ "step": 162
1208
+ },
1209
+ {
1210
+ "epoch": 1.84,
1211
+ "grad_norm": 8.807345567053673,
1212
+ "learning_rate": 0.00013348796121709862,
1213
+ "loss": 7.3378,
1214
+ "step": 163
1215
+ },
1216
+ {
1217
+ "epoch": 1.85,
1218
+ "grad_norm": 10.666053356976384,
1219
+ "learning_rate": 0.00013164306917211476,
1220
+ "loss": 7.0008,
1221
+ "step": 164
1222
+ },
1223
+ {
1224
+ "epoch": 1.86,
1225
+ "grad_norm": 7.835224761952429,
1226
+ "learning_rate": 0.000129786129186637,
1227
+ "loss": 6.9881,
1228
+ "step": 165
1229
+ },
1230
+ {
1231
+ "epoch": 1.87,
1232
+ "grad_norm": 19.4062633667929,
1233
+ "learning_rate": 0.00012791784828128724,
1234
+ "loss": 7.2579,
1235
+ "step": 166
1236
+ },
1237
+ {
1238
+ "epoch": 1.89,
1239
+ "grad_norm": 10.113263144537674,
1240
+ "learning_rate": 0.00012603893779468604,
1241
+ "loss": 7.3091,
1242
+ "step": 167
1243
+ },
1244
+ {
1245
+ "epoch": 1.9,
1246
+ "grad_norm": 10.870503515462726,
1247
+ "learning_rate": 0.0001241501131126138,
1248
+ "loss": 7.4527,
1249
+ "step": 168
1250
+ },
1251
+ {
1252
+ "epoch": 1.91,
1253
+ "grad_norm": 8.533887294828766,
1254
+ "learning_rate": 0.00012225209339563145,
1255
+ "loss": 7.2855,
1256
+ "step": 169
1257
+ },
1258
+ {
1259
+ "epoch": 1.92,
1260
+ "grad_norm": 13.486746604884923,
1261
+ "learning_rate": 0.0001203456013052634,
1262
+ "loss": 7.2705,
1263
+ "step": 170
1264
+ },
1265
+ {
1266
+ "epoch": 1.93,
1267
+ "grad_norm": 10.69251762526038,
1268
+ "learning_rate": 0.00011843136272884794,
1269
+ "loss": 7.0932,
1270
+ "step": 171
1271
+ },
1272
+ {
1273
+ "epoch": 1.94,
1274
+ "grad_norm": 9.124923914761991,
1275
+ "learning_rate": 0.00011651010650315923,
1276
+ "loss": 7.3754,
1277
+ "step": 172
1278
+ },
1279
+ {
1280
+ "epoch": 1.95,
1281
+ "grad_norm": 13.481473855966252,
1282
+ "learning_rate": 0.00011458256413690633,
1283
+ "loss": 7.3104,
1284
+ "step": 173
1285
+ },
1286
+ {
1287
+ "epoch": 1.97,
1288
+ "grad_norm": 13.187202052506544,
1289
+ "learning_rate": 0.00011264946953221496,
1290
+ "loss": 7.3614,
1291
+ "step": 174
1292
+ },
1293
+ {
1294
+ "epoch": 1.98,
1295
+ "grad_norm": 13.527193725705766,
1296
+ "learning_rate": 0.00011071155870519777,
1297
+ "loss": 7.2734,
1298
+ "step": 175
1299
+ },
1300
+ {
1301
+ "epoch": 1.99,
1302
+ "grad_norm": 8.023369511183457,
1303
+ "learning_rate": 0.00010876956950572006,
1304
+ "loss": 7.4786,
1305
+ "step": 176
1306
+ },
1307
+ {
1308
+ "epoch": 1.99,
1309
+ "eval_loss": 7.319369316101074,
1310
+ "eval_runtime": 1.3976,
1311
+ "eval_samples_per_second": 13.595,
1312
+ "eval_steps_per_second": 3.578,
1313
+ "step": 176
1314
+ },
1315
+ {
1316
+ "epoch": 2.0,
1317
+ "grad_norm": 11.41077205951204,
1318
+ "learning_rate": 0.0001068242413364671,
1319
+ "loss": 7.2116,
1320
+ "step": 177
1321
+ },
1322
+ {
1323
+ "epoch": 2.01,
1324
+ "grad_norm": 9.551865991569315,
1325
+ "learning_rate": 0.00010487631487142017,
1326
+ "loss": 7.2411,
1327
+ "step": 178
1328
+ },
1329
+ {
1330
+ "epoch": 2.02,
1331
+ "grad_norm": 11.576046488111642,
1332
+ "learning_rate": 0.00010292653177384876,
1333
+ "loss": 7.4401,
1334
+ "step": 179
1335
+ },
1336
+ {
1337
+ "epoch": 2.01,
1338
+ "grad_norm": 9.356673167513755,
1339
+ "learning_rate": 0.00010097563441392581,
1340
+ "loss": 7.3184,
1341
+ "step": 180
1342
+ },
1343
+ {
1344
+ "epoch": 2.02,
1345
+ "grad_norm": 12.119641565241189,
1346
+ "learning_rate": 9.90243655860742e-05,
1347
+ "loss": 7.2285,
1348
+ "step": 181
1349
+ },
1350
+ {
1351
+ "epoch": 2.03,
1352
+ "grad_norm": 11.06643382673938,
1353
+ "learning_rate": 9.707346822615128e-05,
1354
+ "loss": 7.1729,
1355
+ "step": 182
1356
+ },
1357
+ {
1358
+ "epoch": 2.05,
1359
+ "grad_norm": 9.198991504624212,
1360
+ "learning_rate": 9.512368512857984e-05,
1361
+ "loss": 7.2619,
1362
+ "step": 183
1363
+ },
1364
+ {
1365
+ "epoch": 2.06,
1366
+ "grad_norm": 14.240944645441582,
1367
+ "learning_rate": 9.317575866353292e-05,
1368
+ "loss": 7.5778,
1369
+ "step": 184
1370
+ },
1371
+ {
1372
+ "epoch": 2.07,
1373
+ "grad_norm": 8.473455381717486,
1374
+ "learning_rate": 9.123043049427995e-05,
1375
+ "loss": 7.2432,
1376
+ "step": 185
1377
+ },
1378
+ {
1379
+ "epoch": 2.08,
1380
+ "grad_norm": 12.027303786674432,
1381
+ "learning_rate": 8.928844129480227e-05,
1382
+ "loss": 7.4036,
1383
+ "step": 186
1384
+ },
1385
+ {
1386
+ "epoch": 2.09,
1387
+ "grad_norm": 10.45148339945213,
1388
+ "learning_rate": 8.735053046778506e-05,
1389
+ "loss": 7.2052,
1390
+ "step": 187
1391
+ },
1392
+ {
1393
+ "epoch": 2.1,
1394
+ "grad_norm": 12.816375890508084,
1395
+ "learning_rate": 8.541743586309365e-05,
1396
+ "loss": 7.1882,
1397
+ "step": 188
1398
+ },
1399
+ {
1400
+ "epoch": 2.11,
1401
+ "grad_norm": 12.872264386256504,
1402
+ "learning_rate": 8.348989349684076e-05,
1403
+ "loss": 7.1129,
1404
+ "step": 189
1405
+ },
1406
+ {
1407
+ "epoch": 2.13,
1408
+ "grad_norm": 8.712185045895534,
1409
+ "learning_rate": 8.156863727115211e-05,
1410
+ "loss": 7.3354,
1411
+ "step": 190
1412
+ },
1413
+ {
1414
+ "epoch": 2.14,
1415
+ "grad_norm": 7.169962044034168,
1416
+ "learning_rate": 7.965439869473664e-05,
1417
+ "loss": 7.1493,
1418
+ "step": 191
1419
+ },
1420
+ {
1421
+ "epoch": 2.15,
1422
+ "grad_norm": 9.20643667535514,
1423
+ "learning_rate": 7.774790660436858e-05,
1424
+ "loss": 7.1867,
1425
+ "step": 192
1426
+ },
1427
+ {
1428
+ "epoch": 2.16,
1429
+ "grad_norm": 9.71231661001151,
1430
+ "learning_rate": 7.584988688738622e-05,
1431
+ "loss": 7.1941,
1432
+ "step": 193
1433
+ },
1434
+ {
1435
+ "epoch": 2.17,
1436
+ "grad_norm": 9.869652181292283,
1437
+ "learning_rate": 7.396106220531398e-05,
1438
+ "loss": 7.2606,
1439
+ "step": 194
1440
+ },
1441
+ {
1442
+ "epoch": 2.18,
1443
+ "grad_norm": 7.820315914553451,
1444
+ "learning_rate": 7.208215171871277e-05,
1445
+ "loss": 7.1575,
1446
+ "step": 195
1447
+ },
1448
+ {
1449
+ "epoch": 2.2,
1450
+ "grad_norm": 8.668852408202328,
1451
+ "learning_rate": 7.021387081336301e-05,
1452
+ "loss": 7.3339,
1453
+ "step": 196
1454
+ },
1455
+ {
1456
+ "epoch": 2.21,
1457
+ "grad_norm": 6.97843034949997,
1458
+ "learning_rate": 6.835693082788525e-05,
1459
+ "loss": 7.307,
1460
+ "step": 197
1461
+ },
1462
+ {
1463
+ "epoch": 2.22,
1464
+ "grad_norm": 16.571225038227503,
1465
+ "learning_rate": 6.651203878290139e-05,
1466
+ "loss": 7.3548,
1467
+ "step": 198
1468
+ },
1469
+ {
1470
+ "epoch": 2.22,
1471
+ "eval_loss": 7.309223175048828,
1472
+ "eval_runtime": 1.3716,
1473
+ "eval_samples_per_second": 13.852,
1474
+ "eval_steps_per_second": 3.645,
1475
+ "step": 198
1476
+ },
1477
+ {
1478
+ "epoch": 2.23,
1479
+ "grad_norm": 14.645439276497052,
1480
+ "learning_rate": 6.46798971118402e-05,
1481
+ "loss": 7.1198,
1482
+ "step": 199
1483
+ },
1484
+ {
1485
+ "epoch": 2.24,
1486
+ "grad_norm": 11.180148474401758,
1487
+ "learning_rate": 6.286120339348935e-05,
1488
+ "loss": 7.383,
1489
+ "step": 200
1490
+ },
1491
+ {
1492
+ "epoch": 2.25,
1493
+ "grad_norm": 8.297433608048966,
1494
+ "learning_rate": 6.105665008639557e-05,
1495
+ "loss": 7.0708,
1496
+ "step": 201
1497
+ },
1498
+ {
1499
+ "epoch": 2.26,
1500
+ "grad_norm": 7.35350265603106,
1501
+ "learning_rate": 5.926692426521474e-05,
1502
+ "loss": 7.2686,
1503
+ "step": 202
1504
+ },
1505
+ {
1506
+ "epoch": 2.28,
1507
+ "grad_norm": 10.931447125375616,
1508
+ "learning_rate": 5.749270735911158e-05,
1509
+ "loss": 7.0715,
1510
+ "step": 203
1511
+ },
1512
+ {
1513
+ "epoch": 2.29,
1514
+ "grad_norm": 12.580996736421003,
1515
+ "learning_rate": 5.573467489230879e-05,
1516
+ "loss": 7.3576,
1517
+ "step": 204
1518
+ },
1519
+ {
1520
+ "epoch": 2.3,
1521
+ "grad_norm": 12.648533406639174,
1522
+ "learning_rate": 5.399349622688479e-05,
1523
+ "loss": 7.3546,
1524
+ "step": 205
1525
+ },
1526
+ {
1527
+ "epoch": 2.31,
1528
+ "grad_norm": 8.448979459452485,
1529
+ "learning_rate": 5.226983430791722e-05,
1530
+ "loss": 7.0968,
1531
+ "step": 206
1532
+ },
1533
+ {
1534
+ "epoch": 2.32,
1535
+ "grad_norm": 14.75106031841705,
1536
+ "learning_rate": 5.0564345411070025e-05,
1537
+ "loss": 7.2726,
1538
+ "step": 207
1539
+ },
1540
+ {
1541
+ "epoch": 2.33,
1542
+ "grad_norm": 7.623885276483663,
1543
+ "learning_rate": 4.8877678892719866e-05,
1544
+ "loss": 7.2646,
1545
+ "step": 208
1546
+ },
1547
+ {
1548
+ "epoch": 2.34,
1549
+ "grad_norm": 11.112819218207525,
1550
+ "learning_rate": 4.721047694271676e-05,
1551
+ "loss": 7.1452,
1552
+ "step": 209
1553
+ },
1554
+ {
1555
+ "epoch": 2.36,
1556
+ "grad_norm": 15.00591466641024,
1557
+ "learning_rate": 4.556337433987359e-05,
1558
+ "loss": 6.9634,
1559
+ "step": 210
1560
+ },
1561
+ {
1562
+ "epoch": 2.37,
1563
+ "grad_norm": 9.000881151933429,
1564
+ "learning_rate": 4.393699821027716e-05,
1565
+ "loss": 7.2109,
1566
+ "step": 211
1567
+ },
1568
+ {
1569
+ "epoch": 2.38,
1570
+ "grad_norm": 8.677018023760695,
1571
+ "learning_rate": 4.2331967788513295e-05,
1572
+ "loss": 7.1976,
1573
+ "step": 212
1574
+ },
1575
+ {
1576
+ "epoch": 2.39,
1577
+ "grad_norm": 7.021254016561991,
1578
+ "learning_rate": 4.074889418189608e-05,
1579
+ "loss": 7.2308,
1580
+ "step": 213
1581
+ },
1582
+ {
1583
+ "epoch": 2.4,
1584
+ "grad_norm": 14.097624320239541,
1585
+ "learning_rate": 3.9188380137791936e-05,
1586
+ "loss": 7.2678,
1587
+ "step": 214
1588
+ },
1589
+ {
1590
+ "epoch": 2.41,
1591
+ "grad_norm": 7.660009091922155,
1592
+ "learning_rate": 3.7651019814126654e-05,
1593
+ "loss": 7.2609,
1594
+ "step": 215
1595
+ },
1596
+ {
1597
+ "epoch": 2.43,
1598
+ "grad_norm": 6.879429170747529,
1599
+ "learning_rate": 3.613739855316257e-05,
1600
+ "loss": 7.1545,
1601
+ "step": 216
1602
+ },
1603
+ {
1604
+ "epoch": 2.44,
1605
+ "grad_norm": 9.342549224552343,
1606
+ "learning_rate": 3.46480926586325e-05,
1607
+ "loss": 7.122,
1608
+ "step": 217
1609
+ },
1610
+ {
1611
+ "epoch": 2.45,
1612
+ "grad_norm": 9.584840694689616,
1613
+ "learning_rate": 3.3183669176315045e-05,
1614
+ "loss": 7.2049,
1615
+ "step": 218
1616
+ },
1617
+ {
1618
+ "epoch": 2.46,
1619
+ "grad_norm": 14.37215919620074,
1620
+ "learning_rate": 3.174468567813461e-05,
1621
+ "loss": 7.4374,
1622
+ "step": 219
1623
+ },
1624
+ {
1625
+ "epoch": 2.47,
1626
+ "grad_norm": 6.257502820833114,
1627
+ "learning_rate": 3.033169004986873e-05,
1628
+ "loss": 7.1782,
1629
+ "step": 220
1630
+ },
1631
+ {
1632
+ "epoch": 2.47,
1633
+ "eval_loss": 7.296360492706299,
1634
+ "eval_runtime": 1.3751,
1635
+ "eval_samples_per_second": 13.818,
1636
+ "eval_steps_per_second": 3.636,
1637
+ "step": 220
1638
+ },
1639
+ {
1640
+ "epoch": 2.48,
1641
+ "grad_norm": 7.202404193022492,
1642
+ "learning_rate": 2.894522028254334e-05,
1643
+ "loss": 7.1248,
1644
+ "step": 221
1645
+ },
1646
+ {
1647
+ "epoch": 2.49,
1648
+ "grad_norm": 11.03004064225623,
1649
+ "learning_rate": 2.7585804267595384e-05,
1650
+ "loss": 7.4726,
1651
+ "step": 222
1652
+ },
1653
+ {
1654
+ "epoch": 2.51,
1655
+ "grad_norm": 10.208828744090669,
1656
+ "learning_rate": 2.6253959595880673e-05,
1657
+ "loss": 7.1886,
1658
+ "step": 223
1659
+ },
1660
+ {
1661
+ "epoch": 2.52,
1662
+ "grad_norm": 7.194649499092706,
1663
+ "learning_rate": 2.495019336060387e-05,
1664
+ "loss": 7.2576,
1665
+ "step": 224
1666
+ },
1667
+ {
1668
+ "epoch": 2.53,
1669
+ "grad_norm": 15.063508439238962,
1670
+ "learning_rate": 2.367500196424529e-05,
1671
+ "loss": 6.924,
1672
+ "step": 225
1673
+ },
1674
+ {
1675
+ "epoch": 2.54,
1676
+ "grad_norm": 9.528135297299904,
1677
+ "learning_rate": 2.242887092955801e-05,
1678
+ "loss": 7.1941,
1679
+ "step": 226
1680
+ },
1681
+ {
1682
+ "epoch": 2.55,
1683
+ "grad_norm": 7.719290154588222,
1684
+ "learning_rate": 2.121227471470768e-05,
1685
+ "loss": 7.3391,
1686
+ "step": 227
1687
+ },
1688
+ {
1689
+ "epoch": 2.56,
1690
+ "grad_norm": 7.714834107984481,
1691
+ "learning_rate": 2.002567653262479e-05,
1692
+ "loss": 7.1969,
1693
+ "step": 228
1694
+ },
1695
+ {
1696
+ "epoch": 2.57,
1697
+ "grad_norm": 8.228923346547797,
1698
+ "learning_rate": 1.8869528174638752e-05,
1699
+ "loss": 7.1543,
1700
+ "step": 229
1701
+ },
1702
+ {
1703
+ "epoch": 2.59,
1704
+ "grad_norm": 6.001756411009184,
1705
+ "learning_rate": 1.774426983846058e-05,
1706
+ "loss": 7.2465,
1707
+ "step": 230
1708
+ },
1709
+ {
1710
+ "epoch": 2.6,
1711
+ "grad_norm": 10.434576481704424,
1712
+ "learning_rate": 1.6650329960579792e-05,
1713
+ "loss": 7.2623,
1714
+ "step": 231
1715
+ },
1716
+ {
1717
+ "epoch": 2.61,
1718
+ "grad_norm": 8.095148267701724,
1719
+ "learning_rate": 1.5588125053139468e-05,
1720
+ "loss": 7.1761,
1721
+ "step": 232
1722
+ },
1723
+ {
1724
+ "epoch": 2.62,
1725
+ "grad_norm": 9.145578669056132,
1726
+ "learning_rate": 1.4558059545351143e-05,
1727
+ "loss": 7.1295,
1728
+ "step": 233
1729
+ },
1730
+ {
1731
+ "epoch": 2.63,
1732
+ "grad_norm": 7.413949304325555,
1733
+ "learning_rate": 1.3560525629510568e-05,
1734
+ "loss": 7.1572,
1735
+ "step": 234
1736
+ },
1737
+ {
1738
+ "epoch": 2.64,
1739
+ "grad_norm": 8.238266895583749,
1740
+ "learning_rate": 1.259590311167238e-05,
1741
+ "loss": 7.2317,
1742
+ "step": 235
1743
+ },
1744
+ {
1745
+ "epoch": 2.66,
1746
+ "grad_norm": 7.150286325977236,
1747
+ "learning_rate": 1.166455926704082e-05,
1748
+ "loss": 7.3381,
1749
+ "step": 236
1750
+ },
1751
+ {
1752
+ "epoch": 2.67,
1753
+ "grad_norm": 10.918607427652104,
1754
+ "learning_rate": 1.0766848700131648e-05,
1755
+ "loss": 7.3925,
1756
+ "step": 237
1757
+ },
1758
+ {
1759
+ "epoch": 2.68,
1760
+ "grad_norm": 6.6969446531973285,
1761
+ "learning_rate": 9.903113209758096e-06,
1762
+ "loss": 7.2799,
1763
+ "step": 238
1764
+ },
1765
+ {
1766
+ "epoch": 2.69,
1767
+ "grad_norm": 13.477825461653845,
1768
+ "learning_rate": 9.073681658892775e-06,
1769
+ "loss": 6.901,
1770
+ "step": 239
1771
+ },
1772
+ {
1773
+ "epoch": 2.7,
1774
+ "grad_norm": 6.783585528560174,
1775
+ "learning_rate": 8.278869849454718e-06,
1776
+ "loss": 7.2819,
1777
+ "step": 240
1778
+ },
1779
+ {
1780
+ "epoch": 2.71,
1781
+ "grad_norm": 9.548057270672551,
1782
+ "learning_rate": 7.5189804020693536e-06,
1783
+ "loss": 7.1192,
1784
+ "step": 241
1785
+ },
1786
+ {
1787
+ "epoch": 2.72,
1788
+ "grad_norm": 7.742180355619181,
1789
+ "learning_rate": 6.794302640847294e-06,
1790
+ "loss": 7.2729,
1791
+ "step": 242
1792
+ },
1793
+ {
1794
+ "epoch": 2.72,
1795
+ "eval_loss": 7.292217254638672,
1796
+ "eval_runtime": 1.3839,
1797
+ "eval_samples_per_second": 13.729,
1798
+ "eval_steps_per_second": 3.613,
1799
+ "step": 242
1800
+ },
1801
+ {
1802
+ "epoch": 2.74,
1803
+ "grad_norm": 10.845656873156827,
1804
+ "learning_rate": 6.1051124832254944e-06,
1805
+ "loss": 6.9693,
1806
+ "step": 243
1807
+ },
1808
+ {
1809
+ "epoch": 2.75,
1810
+ "grad_norm": 10.323147542445835,
1811
+ "learning_rate": 5.451672334913216e-06,
1812
+ "loss": 7.3785,
1813
+ "step": 244
1814
+ },
1815
+ {
1816
+ "epoch": 2.76,
1817
+ "grad_norm": 10.41796325752105,
1818
+ "learning_rate": 4.834230989982213e-06,
1819
+ "loss": 7.3632,
1820
+ "step": 245
1821
+ },
1822
+ {
1823
+ "epoch": 2.77,
1824
+ "grad_norm": 6.590462249149956,
1825
+ "learning_rate": 4.253023536139733e-06,
1826
+ "loss": 7.279,
1827
+ "step": 246
1828
+ },
1829
+ {
1830
+ "epoch": 2.78,
1831
+ "grad_norm": 9.637387713657647,
1832
+ "learning_rate": 3.7082712652200867e-06,
1833
+ "loss": 7.2857,
1834
+ "step": 247
1835
+ },
1836
+ {
1837
+ "epoch": 2.79,
1838
+ "grad_norm": 5.983998578137723,
1839
+ "learning_rate": 3.2001815889286856e-06,
1840
+ "loss": 7.2269,
1841
+ "step": 248
1842
+ },
1843
+ {
1844
+ "epoch": 2.8,
1845
+ "grad_norm": 6.750577266168699,
1846
+ "learning_rate": 2.728947959871353e-06,
1847
+ "loss": 7.2672,
1848
+ "step": 249
1849
+ },
1850
+ {
1851
+ "epoch": 2.82,
1852
+ "grad_norm": 8.828265865856226,
1853
+ "learning_rate": 2.294749797897955e-06,
1854
+ "loss": 7.1355,
1855
+ "step": 250
1856
+ },
1857
+ {
1858
+ "epoch": 2.83,
1859
+ "grad_norm": 8.092540989425222,
1860
+ "learning_rate": 1.8977524217893783e-06,
1861
+ "loss": 7.079,
1862
+ "step": 251
1863
+ },
1864
+ {
1865
+ "epoch": 2.84,
1866
+ "grad_norm": 14.298932570519032,
1867
+ "learning_rate": 1.5381069863131037e-06,
1868
+ "loss": 7.1462,
1869
+ "step": 252
1870
+ },
1871
+ {
1872
+ "epoch": 2.85,
1873
+ "grad_norm": 6.9722905081773465,
1874
+ "learning_rate": 1.2159504246718522e-06,
1875
+ "loss": 7.1766,
1876
+ "step": 253
1877
+ },
1878
+ {
1879
+ "epoch": 2.86,
1880
+ "grad_norm": 8.429744971276516,
1881
+ "learning_rate": 9.314053963669245e-07,
1882
+ "loss": 7.3844,
1883
+ "step": 254
1884
+ },
1885
+ {
1886
+ "epoch": 2.87,
1887
+ "grad_norm": 7.0927677230675386,
1888
+ "learning_rate": 6.845802404962243e-07,
1889
+ "loss": 7.3318,
1890
+ "step": 255
1891
+ },
1892
+ {
1893
+ "epoch": 2.89,
1894
+ "grad_norm": 6.6033524293092265,
1895
+ "learning_rate": 4.7556893450466653e-07,
1896
+ "loss": 7.1159,
1897
+ "step": 256
1898
+ },
1899
+ {
1900
+ "epoch": 2.9,
1901
+ "grad_norm": 9.59870072155561,
1902
+ "learning_rate": 3.044510584027771e-07,
1903
+ "loss": 7.3733,
1904
+ "step": 257
1905
+ },
1906
+ {
1907
+ "epoch": 2.91,
1908
+ "grad_norm": 7.255692976305313,
1909
+ "learning_rate": 1.7129176446692984e-07,
1910
+ "loss": 7.2345,
1911
+ "step": 258
1912
+ },
1913
+ {
1914
+ "epoch": 2.92,
1915
+ "grad_norm": 7.239401601436061,
1916
+ "learning_rate": 7.614175243301213e-08,
1917
+ "loss": 7.2672,
1918
+ "step": 259
1919
+ },
1920
+ {
1921
+ "epoch": 2.93,
1922
+ "grad_norm": 6.342843427851908,
1923
+ "learning_rate": 1.9037250192732726e-08,
1924
+ "loss": 7.2741,
1925
+ "step": 260
1926
+ },
1927
+ {
1928
+ "epoch": 2.94,
1929
+ "grad_norm": 8.76817744282957,
1930
+ "learning_rate": 0.0,
1931
+ "loss": 7.2543,
1932
+ "step": 261
1933
+ }
1934
+ ],
1935
+ "logging_steps": 1,
1936
+ "max_steps": 261,
1937
+ "num_input_tokens_seen": 0,
1938
+ "num_train_epochs": 3,
1939
+ "save_steps": 87,
1940
+ "total_flos": 1.8244065215014502e+17,
1941
+ "train_batch_size": 1,
1942
+ "trial_name": null,
1943
+ "trial_params": null
1944
+ }
checkpoint-261/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50b6bb5c490e8ef22b44507d2914da60c8e4f8c0f5671692c3b6485d1e90608
3
+ size 6395
checkpoint-261/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-87/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.38.0",
24
+ "use_cache": false,
25
+ "vocab_size": 32000
26
+ }
checkpoint-87/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.38.0"
7
+ }
checkpoint-87/global_step87/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa77e1c15fd13f4b39e2cb678b0bcc5bea3143286be846509a06dd79902b1ad9
3
+ size 21725204471
checkpoint-87/global_step87/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25db455cc5e6b2b7fc43cee07c88abf4b434ae7348970c9f02208f724fbdbb4c
3
+ size 21725205111
checkpoint-87/global_step87/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f15eb234b5d2535de1c90ebaa15957108ebb58dd18d19e4160f8f6e6f413492
3
+ size 21725205111
checkpoint-87/global_step87/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2c61628b310c63934ceb4cec5b83577d0227f9f766867eb3b59b25bdf3d4d62
3
+ size 21725204535
checkpoint-87/global_step87/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c57109fa782567ba8ae332992d54c6d5fc3ef338c1a4af21ca98a5c0912a07a
3
+ size 14483551747
checkpoint-87/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step87
checkpoint-87/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58d3ad8b1fe0901cec33dc9668265daa215b322b436d771ea44d37b63589ee4b
3
+ size 4943162336