Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +153 -0
- checkpoint-174/config.json +26 -0
- checkpoint-174/generation_config.json +7 -0
- checkpoint-174/global_step174/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-174/global_step174/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-174/global_step174/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-174/global_step174/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-174/global_step174/mp_rank_00_model_states.pt +3 -0
- checkpoint-174/latest +1 -0
- checkpoint-174/model-00001-of-00003.safetensors +3 -0
- checkpoint-174/model-00002-of-00003.safetensors +3 -0
- checkpoint-174/model-00003-of-00003.safetensors +3 -0
- checkpoint-174/model.safetensors.index.json +298 -0
- checkpoint-174/rng_state_0.pth +3 -0
- checkpoint-174/rng_state_1.pth +3 -0
- checkpoint-174/rng_state_2.pth +3 -0
- checkpoint-174/rng_state_3.pth +3 -0
- checkpoint-174/scheduler.pt +3 -0
- checkpoint-174/trainer_state.json +1303 -0
- checkpoint-174/training_args.bin +3 -0
- checkpoint-174/zero_to_fp32.py +592 -0
- checkpoint-261/config.json +26 -0
- checkpoint-261/generation_config.json +7 -0
- checkpoint-261/global_step261/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-261/global_step261/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-261/global_step261/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-261/global_step261/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-261/global_step261/mp_rank_00_model_states.pt +3 -0
- checkpoint-261/latest +1 -0
- checkpoint-261/model-00001-of-00003.safetensors +3 -0
- checkpoint-261/model-00002-of-00003.safetensors +3 -0
- checkpoint-261/model-00003-of-00003.safetensors +3 -0
- checkpoint-261/model.safetensors.index.json +298 -0
- checkpoint-261/rng_state_0.pth +3 -0
- checkpoint-261/rng_state_1.pth +3 -0
- checkpoint-261/rng_state_2.pth +3 -0
- checkpoint-261/rng_state_3.pth +3 -0
- checkpoint-261/scheduler.pt +3 -0
- checkpoint-261/trainer_state.json +1944 -0
- checkpoint-261/training_args.bin +3 -0
- checkpoint-261/zero_to_fp32.py +592 -0
- checkpoint-87/config.json +26 -0
- checkpoint-87/generation_config.json +7 -0
- checkpoint-87/global_step87/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-87/global_step87/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-87/global_step87/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-87/global_step87/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-87/global_step87/mp_rank_00_model_states.pt +3 -0
- checkpoint-87/latest +1 -0
- checkpoint-87/model-00001-of-00003.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: mistral-7B-MedText-epochs-3-lr-0002
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
15 |
+
<details><summary>See axolotl config</summary>
|
16 |
+
|
17 |
+
axolotl version: `0.4.0`
|
18 |
+
```yaml
|
19 |
+
base_model: mistralai/Mistral-7B-v0.1
|
20 |
+
model_type: MistralForCausalLM
|
21 |
+
tokenizer_type: LlamaTokenizer
|
22 |
+
is_mistral_derived_model: true
|
23 |
+
|
24 |
+
load_in_8bit: false
|
25 |
+
load_in_4bit: false
|
26 |
+
strict: false
|
27 |
+
|
28 |
+
datasets:
|
29 |
+
- path: utrgvseniorproject/medtext
|
30 |
+
type: completion
|
31 |
+
dataset_prepared_path: last_run_prepared
|
32 |
+
val_set_size: 0.05
|
33 |
+
output_dir: ./mistral-7B-MedText-epochs-3-lr-0002
|
34 |
+
|
35 |
+
sequence_len: 4096
|
36 |
+
sample_packing: true
|
37 |
+
pad_to_sequence_len: true
|
38 |
+
|
39 |
+
adapter:
|
40 |
+
lora_model_dir:
|
41 |
+
lora_r:
|
42 |
+
lora_alpha:
|
43 |
+
lora_dropout:
|
44 |
+
lora_target_linear:
|
45 |
+
lora_fan_in_fan_out:
|
46 |
+
|
47 |
+
wandb_project: mistral-7B-MedText
|
48 |
+
wandb_entity: utrgvmedai
|
49 |
+
wandb_watch:
|
50 |
+
wandb_name: mistral-7B-MedText-epochs-3-lr-0002
|
51 |
+
wandb_log_model:
|
52 |
+
|
53 |
+
gradient_accumulation_steps: 1
|
54 |
+
micro_batch_size: 1
|
55 |
+
num_epochs: 3
|
56 |
+
optimizer: adamw_bnb_8bit
|
57 |
+
lr_scheduler: cosine
|
58 |
+
learning_rate: 0.0002
|
59 |
+
|
60 |
+
train_on_inputs: true
|
61 |
+
group_by_length: false
|
62 |
+
bf16: auto
|
63 |
+
fp16:
|
64 |
+
tf32: false
|
65 |
+
|
66 |
+
gradient_checkpointing: true
|
67 |
+
early_stopping_patience:
|
68 |
+
#resume_from_checkpoint: true
|
69 |
+
local_rank:
|
70 |
+
logging_steps: 1
|
71 |
+
xformers_attention:
|
72 |
+
flash_attention: true
|
73 |
+
flash_attn_cross_entropy: false
|
74 |
+
flash_attn_rms_norm: true
|
75 |
+
flash_attn_fuse_qkv: false
|
76 |
+
flash_attn_fuse_mlp: true
|
77 |
+
|
78 |
+
warmup_steps: 100
|
79 |
+
evals_per_epoch: 4
|
80 |
+
eval_table_size:
|
81 |
+
eval_sample_packing: False
|
82 |
+
saves_per_epoch: 1
|
83 |
+
debug:
|
84 |
+
deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
|
85 |
+
weight_decay: 0.1
|
86 |
+
fsdp:
|
87 |
+
fsdp_config:
|
88 |
+
special_tokens:
|
89 |
+
|
90 |
+
```
|
91 |
+
|
92 |
+
</details><br>
|
93 |
+
|
94 |
+
# mistral-7B-MedText-epochs-3-lr-0002
|
95 |
+
|
96 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
97 |
+
It achieves the following results on the evaluation set:
|
98 |
+
- Loss: 7.2922
|
99 |
+
|
100 |
+
## Model description
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Intended uses & limitations
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training and evaluation data
|
109 |
+
|
110 |
+
More information needed
|
111 |
+
|
112 |
+
## Training procedure
|
113 |
+
|
114 |
+
### Training hyperparameters
|
115 |
+
|
116 |
+
The following hyperparameters were used during training:
|
117 |
+
- learning_rate: 0.0002
|
118 |
+
- train_batch_size: 1
|
119 |
+
- eval_batch_size: 1
|
120 |
+
- seed: 42
|
121 |
+
- distributed_type: multi-GPU
|
122 |
+
- num_devices: 4
|
123 |
+
- total_train_batch_size: 4
|
124 |
+
- total_eval_batch_size: 4
|
125 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
126 |
+
- lr_scheduler_type: cosine
|
127 |
+
- lr_scheduler_warmup_steps: 100
|
128 |
+
- num_epochs: 3
|
129 |
+
|
130 |
+
### Training results
|
131 |
+
|
132 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
133 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
134 |
+
| 1.3985 | 0.01 | 1 | 1.5677 |
|
135 |
+
| 1.4776 | 0.25 | 22 | 1.8568 |
|
136 |
+
| 10.1246 | 0.51 | 44 | 8.7590 |
|
137 |
+
| 8.1284 | 0.76 | 66 | 8.0049 |
|
138 |
+
| 7.3967 | 1.01 | 88 | 7.4614 |
|
139 |
+
| 7.2567 | 1.23 | 110 | 7.2993 |
|
140 |
+
| 7.3329 | 1.48 | 132 | 7.3749 |
|
141 |
+
| 7.0671 | 1.74 | 154 | 7.3365 |
|
142 |
+
| 7.4786 | 1.99 | 176 | 7.3194 |
|
143 |
+
| 7.3548 | 2.22 | 198 | 7.3092 |
|
144 |
+
| 7.1782 | 2.47 | 220 | 7.2964 |
|
145 |
+
| 7.2729 | 2.72 | 242 | 7.2922 |
|
146 |
+
|
147 |
+
|
148 |
+
### Framework versions
|
149 |
+
|
150 |
+
- Transformers 4.38.0
|
151 |
+
- Pytorch 2.0.1+cu117
|
152 |
+
- Datasets 2.17.0
|
153 |
+
- Tokenizers 0.15.0
|
checkpoint-174/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.0",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
checkpoint-174/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.38.0"
|
7 |
+
}
|
checkpoint-174/global_step174/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03d6725388def79326de49d69d8c6b94170b534dd31f6a030b7a2cbc2d601c94
|
3 |
+
size 21725204471
|
checkpoint-174/global_step174/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9849abfddf8ba736da45584934d8c464b6e43f73e0dab39ae34b2420c7668144
|
3 |
+
size 21725205111
|
checkpoint-174/global_step174/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:013acab701355320fcbd84283d45579ded93da9287d18209908e3313d973915f
|
3 |
+
size 21725205111
|
checkpoint-174/global_step174/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:107c21efe5b9cb5ee1ea8f2e3e646ca7683d8b5b2ac2d693c020a4c9e0435282
|
3 |
+
size 21725204535
|
checkpoint-174/global_step174/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ec4f15bbbe81efd524cf417a820f9118838524077c76a700f3567a758312b8a
|
3 |
+
size 14483551747
|
checkpoint-174/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step174
|
checkpoint-174/model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3de77ae8eae772f363eeb8943d44cccb53d98891ac8469da8e9f370750a5d155
|
3 |
+
size 4943162336
|
checkpoint-174/model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45f0c04c0135c3b2c9d387fe2334075a0a1b40b1bdc5d5126a65b86e2085fbf1
|
3 |
+
size 4999819336
|
checkpoint-174/model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a574bf1ffd420f13cf2f6d14a3d032ba8c604cb738a0266920a361ac5418eb00
|
3 |
+
size 4540516344
|
checkpoint-174/model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-174/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4aa38064359163a436b682a76922629be0d47715cc93798f53c30584786df380
|
3 |
+
size 17655
|
checkpoint-174/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:386882d88441fb270dac4c0a02c6b12d9125a96b7fa06d4456448d9d1b9da975
|
3 |
+
size 17655
|
checkpoint-174/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c2119f0f2530fd325c172a94b131c42f068b4b61340e0b39e5188ebdebae961
|
3 |
+
size 17655
|
checkpoint-174/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b265d61c7eae8db516afc3f2f413284853452f9b41a53ad49381bf25c87ed7a9
|
3 |
+
size 17655
|
checkpoint-174/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ba61684322025b96b5a644148a042abe6fbab4ac762f0d5bcae8f648817ea4e
|
3 |
+
size 627
|
checkpoint-174/trainer_state.json
ADDED
@@ -0,0 +1,1303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9655172413793105,
|
5 |
+
"eval_steps": 22,
|
6 |
+
"global_step": 174,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 19.59183260405101,
|
14 |
+
"learning_rate": 2.0000000000000003e-06,
|
15 |
+
"loss": 1.3985,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"eval_loss": 1.5676738023757935,
|
21 |
+
"eval_runtime": 3.9227,
|
22 |
+
"eval_samples_per_second": 4.844,
|
23 |
+
"eval_steps_per_second": 1.275,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.02,
|
28 |
+
"grad_norm": 25.857640141956836,
|
29 |
+
"learning_rate": 4.000000000000001e-06,
|
30 |
+
"loss": 1.6073,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.03,
|
35 |
+
"grad_norm": 19.53747244629775,
|
36 |
+
"learning_rate": 6e-06,
|
37 |
+
"loss": 1.5784,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.05,
|
42 |
+
"grad_norm": 32.1611390841105,
|
43 |
+
"learning_rate": 8.000000000000001e-06,
|
44 |
+
"loss": 1.4924,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.06,
|
49 |
+
"grad_norm": 25.68491589990429,
|
50 |
+
"learning_rate": 1e-05,
|
51 |
+
"loss": 1.5215,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.07,
|
56 |
+
"grad_norm": 21.800722806654328,
|
57 |
+
"learning_rate": 1.2e-05,
|
58 |
+
"loss": 1.5508,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.08,
|
63 |
+
"grad_norm": 17.19812526688047,
|
64 |
+
"learning_rate": 1.4000000000000001e-05,
|
65 |
+
"loss": 1.205,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.09,
|
70 |
+
"grad_norm": 33.24510948526866,
|
71 |
+
"learning_rate": 1.6000000000000003e-05,
|
72 |
+
"loss": 1.6376,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.1,
|
77 |
+
"grad_norm": 14.986129451187,
|
78 |
+
"learning_rate": 1.8e-05,
|
79 |
+
"loss": 1.454,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.11,
|
84 |
+
"grad_norm": 17.517194747344856,
|
85 |
+
"learning_rate": 2e-05,
|
86 |
+
"loss": 1.6559,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.13,
|
91 |
+
"grad_norm": 18.22606604955052,
|
92 |
+
"learning_rate": 2.2000000000000003e-05,
|
93 |
+
"loss": 1.5816,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.14,
|
98 |
+
"grad_norm": 26.577328122239592,
|
99 |
+
"learning_rate": 2.4e-05,
|
100 |
+
"loss": 1.7884,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.15,
|
105 |
+
"grad_norm": 17.563463503652706,
|
106 |
+
"learning_rate": 2.6000000000000002e-05,
|
107 |
+
"loss": 1.4405,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.16,
|
112 |
+
"grad_norm": 19.98739837372538,
|
113 |
+
"learning_rate": 2.8000000000000003e-05,
|
114 |
+
"loss": 1.7512,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.17,
|
119 |
+
"grad_norm": 16.25364292099236,
|
120 |
+
"learning_rate": 3e-05,
|
121 |
+
"loss": 1.7037,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.18,
|
126 |
+
"grad_norm": 22.328347783615648,
|
127 |
+
"learning_rate": 3.2000000000000005e-05,
|
128 |
+
"loss": 1.5476,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.2,
|
133 |
+
"grad_norm": 20.71265405702363,
|
134 |
+
"learning_rate": 3.4000000000000007e-05,
|
135 |
+
"loss": 1.8108,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.21,
|
140 |
+
"grad_norm": 22.425069186679085,
|
141 |
+
"learning_rate": 3.6e-05,
|
142 |
+
"loss": 1.6751,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.22,
|
147 |
+
"grad_norm": 18.646553829771403,
|
148 |
+
"learning_rate": 3.8e-05,
|
149 |
+
"loss": 1.7696,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.23,
|
154 |
+
"grad_norm": 16.74801305116847,
|
155 |
+
"learning_rate": 4e-05,
|
156 |
+
"loss": 1.7699,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.24,
|
161 |
+
"grad_norm": 30.99364381661585,
|
162 |
+
"learning_rate": 4.2e-05,
|
163 |
+
"loss": 2.1827,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.25,
|
168 |
+
"grad_norm": 19.761245037191404,
|
169 |
+
"learning_rate": 4.4000000000000006e-05,
|
170 |
+
"loss": 1.4776,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.25,
|
175 |
+
"eval_loss": 1.856759786605835,
|
176 |
+
"eval_runtime": 1.4309,
|
177 |
+
"eval_samples_per_second": 13.279,
|
178 |
+
"eval_steps_per_second": 3.494,
|
179 |
+
"step": 22
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.26,
|
183 |
+
"grad_norm": 27.821861354666428,
|
184 |
+
"learning_rate": 4.600000000000001e-05,
|
185 |
+
"loss": 1.8677,
|
186 |
+
"step": 23
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.28,
|
190 |
+
"grad_norm": 22.80354998875929,
|
191 |
+
"learning_rate": 4.8e-05,
|
192 |
+
"loss": 1.7424,
|
193 |
+
"step": 24
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.29,
|
197 |
+
"grad_norm": 19.920321630615994,
|
198 |
+
"learning_rate": 5e-05,
|
199 |
+
"loss": 1.769,
|
200 |
+
"step": 25
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.3,
|
204 |
+
"grad_norm": 23.82621534355921,
|
205 |
+
"learning_rate": 5.2000000000000004e-05,
|
206 |
+
"loss": 1.8615,
|
207 |
+
"step": 26
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.31,
|
211 |
+
"grad_norm": 27.63826215875828,
|
212 |
+
"learning_rate": 5.4000000000000005e-05,
|
213 |
+
"loss": 1.7164,
|
214 |
+
"step": 27
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.32,
|
218 |
+
"grad_norm": 30.810269474286084,
|
219 |
+
"learning_rate": 5.6000000000000006e-05,
|
220 |
+
"loss": 1.8922,
|
221 |
+
"step": 28
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.33,
|
225 |
+
"grad_norm": 23.279443617002265,
|
226 |
+
"learning_rate": 5.8e-05,
|
227 |
+
"loss": 1.8507,
|
228 |
+
"step": 29
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.34,
|
232 |
+
"grad_norm": 18.091756285883704,
|
233 |
+
"learning_rate": 6e-05,
|
234 |
+
"loss": 1.6537,
|
235 |
+
"step": 30
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.36,
|
239 |
+
"grad_norm": 23.292568819411724,
|
240 |
+
"learning_rate": 6.2e-05,
|
241 |
+
"loss": 1.9125,
|
242 |
+
"step": 31
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.37,
|
246 |
+
"grad_norm": 52.21913805211888,
|
247 |
+
"learning_rate": 6.400000000000001e-05,
|
248 |
+
"loss": 1.8456,
|
249 |
+
"step": 32
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.38,
|
253 |
+
"grad_norm": 30.771918199992527,
|
254 |
+
"learning_rate": 6.6e-05,
|
255 |
+
"loss": 1.9398,
|
256 |
+
"step": 33
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.39,
|
260 |
+
"grad_norm": 40.19880102087157,
|
261 |
+
"learning_rate": 6.800000000000001e-05,
|
262 |
+
"loss": 2.3763,
|
263 |
+
"step": 34
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.4,
|
267 |
+
"grad_norm": 28.33779955799431,
|
268 |
+
"learning_rate": 7e-05,
|
269 |
+
"loss": 2.0815,
|
270 |
+
"step": 35
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.41,
|
274 |
+
"grad_norm": 54.379783823327905,
|
275 |
+
"learning_rate": 7.2e-05,
|
276 |
+
"loss": 2.1032,
|
277 |
+
"step": 36
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.43,
|
281 |
+
"grad_norm": 662.6041427579516,
|
282 |
+
"learning_rate": 7.4e-05,
|
283 |
+
"loss": 3.5917,
|
284 |
+
"step": 37
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.44,
|
288 |
+
"grad_norm": 4011.501090614335,
|
289 |
+
"learning_rate": 7.6e-05,
|
290 |
+
"loss": 7.3933,
|
291 |
+
"step": 38
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.45,
|
295 |
+
"grad_norm": 753.5816146908044,
|
296 |
+
"learning_rate": 7.800000000000001e-05,
|
297 |
+
"loss": 15.8371,
|
298 |
+
"step": 39
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.46,
|
302 |
+
"grad_norm": 291.86609997137384,
|
303 |
+
"learning_rate": 8e-05,
|
304 |
+
"loss": 9.0249,
|
305 |
+
"step": 40
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.47,
|
309 |
+
"grad_norm": 922.0326051718562,
|
310 |
+
"learning_rate": 8.2e-05,
|
311 |
+
"loss": 9.8922,
|
312 |
+
"step": 41
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.48,
|
316 |
+
"grad_norm": 115.68135873083658,
|
317 |
+
"learning_rate": 8.4e-05,
|
318 |
+
"loss": 8.2719,
|
319 |
+
"step": 42
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.49,
|
323 |
+
"grad_norm": 693.1702757980898,
|
324 |
+
"learning_rate": 8.6e-05,
|
325 |
+
"loss": 24.1699,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.51,
|
330 |
+
"grad_norm": 219.78828591396768,
|
331 |
+
"learning_rate": 8.800000000000001e-05,
|
332 |
+
"loss": 10.1246,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.51,
|
337 |
+
"eval_loss": 8.758976936340332,
|
338 |
+
"eval_runtime": 1.3819,
|
339 |
+
"eval_samples_per_second": 13.749,
|
340 |
+
"eval_steps_per_second": 3.618,
|
341 |
+
"step": 44
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.52,
|
345 |
+
"grad_norm": 101.32256273283853,
|
346 |
+
"learning_rate": 9e-05,
|
347 |
+
"loss": 9.1756,
|
348 |
+
"step": 45
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.53,
|
352 |
+
"grad_norm": 11.958039992364316,
|
353 |
+
"learning_rate": 9.200000000000001e-05,
|
354 |
+
"loss": 7.7273,
|
355 |
+
"step": 46
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.54,
|
359 |
+
"grad_norm": 3232.8188937829473,
|
360 |
+
"learning_rate": 9.4e-05,
|
361 |
+
"loss": 8.7486,
|
362 |
+
"step": 47
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.55,
|
366 |
+
"grad_norm": 34.97640980952823,
|
367 |
+
"learning_rate": 9.6e-05,
|
368 |
+
"loss": 8.0394,
|
369 |
+
"step": 48
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.56,
|
373 |
+
"grad_norm": 28.785233378323184,
|
374 |
+
"learning_rate": 9.8e-05,
|
375 |
+
"loss": 7.6241,
|
376 |
+
"step": 49
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.57,
|
380 |
+
"grad_norm": 734.1733446536996,
|
381 |
+
"learning_rate": 0.0001,
|
382 |
+
"loss": 7.7813,
|
383 |
+
"step": 50
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.59,
|
387 |
+
"grad_norm": 59.66290191764372,
|
388 |
+
"learning_rate": 0.00010200000000000001,
|
389 |
+
"loss": 7.6734,
|
390 |
+
"step": 51
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 0.6,
|
394 |
+
"grad_norm": 18.23606863385719,
|
395 |
+
"learning_rate": 0.00010400000000000001,
|
396 |
+
"loss": 7.8783,
|
397 |
+
"step": 52
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.61,
|
401 |
+
"grad_norm": 15.152500341579357,
|
402 |
+
"learning_rate": 0.00010600000000000002,
|
403 |
+
"loss": 7.6016,
|
404 |
+
"step": 53
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.62,
|
408 |
+
"grad_norm": 25.1062172290986,
|
409 |
+
"learning_rate": 0.00010800000000000001,
|
410 |
+
"loss": 7.7206,
|
411 |
+
"step": 54
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.63,
|
415 |
+
"grad_norm": 30.75760910048317,
|
416 |
+
"learning_rate": 0.00011000000000000002,
|
417 |
+
"loss": 7.7526,
|
418 |
+
"step": 55
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.64,
|
422 |
+
"grad_norm": 18.354297835205724,
|
423 |
+
"learning_rate": 0.00011200000000000001,
|
424 |
+
"loss": 7.5551,
|
425 |
+
"step": 56
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.66,
|
429 |
+
"grad_norm": 32.48061320811231,
|
430 |
+
"learning_rate": 0.00011399999999999999,
|
431 |
+
"loss": 7.6922,
|
432 |
+
"step": 57
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.67,
|
436 |
+
"grad_norm": 26.624723764338736,
|
437 |
+
"learning_rate": 0.000116,
|
438 |
+
"loss": 7.5791,
|
439 |
+
"step": 58
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.68,
|
443 |
+
"grad_norm": 13.92226298912218,
|
444 |
+
"learning_rate": 0.000118,
|
445 |
+
"loss": 7.3692,
|
446 |
+
"step": 59
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.69,
|
450 |
+
"grad_norm": 15.428105634893914,
|
451 |
+
"learning_rate": 0.00012,
|
452 |
+
"loss": 7.564,
|
453 |
+
"step": 60
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.7,
|
457 |
+
"grad_norm": 23.02235056392551,
|
458 |
+
"learning_rate": 0.000122,
|
459 |
+
"loss": 7.3948,
|
460 |
+
"step": 61
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.71,
|
464 |
+
"grad_norm": 16.470374126805776,
|
465 |
+
"learning_rate": 0.000124,
|
466 |
+
"loss": 7.4646,
|
467 |
+
"step": 62
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.72,
|
471 |
+
"grad_norm": 19.574553557429,
|
472 |
+
"learning_rate": 0.000126,
|
473 |
+
"loss": 7.3902,
|
474 |
+
"step": 63
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.74,
|
478 |
+
"grad_norm": 25.549182808604662,
|
479 |
+
"learning_rate": 0.00012800000000000002,
|
480 |
+
"loss": 7.5461,
|
481 |
+
"step": 64
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.75,
|
485 |
+
"grad_norm": 618.1147749407063,
|
486 |
+
"learning_rate": 0.00013000000000000002,
|
487 |
+
"loss": 8.157,
|
488 |
+
"step": 65
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.76,
|
492 |
+
"grad_norm": 66.0610660913446,
|
493 |
+
"learning_rate": 0.000132,
|
494 |
+
"loss": 8.1284,
|
495 |
+
"step": 66
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.76,
|
499 |
+
"eval_loss": 8.004860877990723,
|
500 |
+
"eval_runtime": 1.3748,
|
501 |
+
"eval_samples_per_second": 13.82,
|
502 |
+
"eval_steps_per_second": 3.637,
|
503 |
+
"step": 66
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.77,
|
507 |
+
"grad_norm": 41.635960690924975,
|
508 |
+
"learning_rate": 0.000134,
|
509 |
+
"loss": 8.0602,
|
510 |
+
"step": 67
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 0.78,
|
514 |
+
"grad_norm": 16.679869546723175,
|
515 |
+
"learning_rate": 0.00013600000000000003,
|
516 |
+
"loss": 7.8268,
|
517 |
+
"step": 68
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 0.79,
|
521 |
+
"grad_norm": 33.70142265056291,
|
522 |
+
"learning_rate": 0.000138,
|
523 |
+
"loss": 8.1206,
|
524 |
+
"step": 69
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.8,
|
528 |
+
"grad_norm": 43.29315748881759,
|
529 |
+
"learning_rate": 0.00014,
|
530 |
+
"loss": 7.7882,
|
531 |
+
"step": 70
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.82,
|
535 |
+
"grad_norm": 28.3799834727588,
|
536 |
+
"learning_rate": 0.000142,
|
537 |
+
"loss": 7.5454,
|
538 |
+
"step": 71
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 0.83,
|
542 |
+
"grad_norm": 30.911781055251613,
|
543 |
+
"learning_rate": 0.000144,
|
544 |
+
"loss": 7.7616,
|
545 |
+
"step": 72
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.84,
|
549 |
+
"grad_norm": 56.741836296758365,
|
550 |
+
"learning_rate": 0.000146,
|
551 |
+
"loss": 8.1145,
|
552 |
+
"step": 73
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.85,
|
556 |
+
"grad_norm": 13.967249574234195,
|
557 |
+
"learning_rate": 0.000148,
|
558 |
+
"loss": 7.6758,
|
559 |
+
"step": 74
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.86,
|
563 |
+
"grad_norm": 42.28071588262047,
|
564 |
+
"learning_rate": 0.00015000000000000001,
|
565 |
+
"loss": 7.5507,
|
566 |
+
"step": 75
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.87,
|
570 |
+
"grad_norm": 27.40577229308579,
|
571 |
+
"learning_rate": 0.000152,
|
572 |
+
"loss": 7.6852,
|
573 |
+
"step": 76
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.89,
|
577 |
+
"grad_norm": 21.422615778584905,
|
578 |
+
"learning_rate": 0.000154,
|
579 |
+
"loss": 7.6071,
|
580 |
+
"step": 77
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 0.9,
|
584 |
+
"grad_norm": 28.22569647336005,
|
585 |
+
"learning_rate": 0.00015600000000000002,
|
586 |
+
"loss": 7.5556,
|
587 |
+
"step": 78
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.91,
|
591 |
+
"grad_norm": 20.075502929468385,
|
592 |
+
"learning_rate": 0.00015800000000000002,
|
593 |
+
"loss": 7.529,
|
594 |
+
"step": 79
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.92,
|
598 |
+
"grad_norm": 14.896626626967638,
|
599 |
+
"learning_rate": 0.00016,
|
600 |
+
"loss": 7.5352,
|
601 |
+
"step": 80
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.93,
|
605 |
+
"grad_norm": 16.98565517398293,
|
606 |
+
"learning_rate": 0.000162,
|
607 |
+
"loss": 7.5734,
|
608 |
+
"step": 81
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.94,
|
612 |
+
"grad_norm": 17.76803489316823,
|
613 |
+
"learning_rate": 0.000164,
|
614 |
+
"loss": 7.591,
|
615 |
+
"step": 82
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.95,
|
619 |
+
"grad_norm": 15.601674972992182,
|
620 |
+
"learning_rate": 0.000166,
|
621 |
+
"loss": 7.4251,
|
622 |
+
"step": 83
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.97,
|
626 |
+
"grad_norm": 21.36580777081032,
|
627 |
+
"learning_rate": 0.000168,
|
628 |
+
"loss": 7.728,
|
629 |
+
"step": 84
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.98,
|
633 |
+
"grad_norm": 19.73380900316605,
|
634 |
+
"learning_rate": 0.00017,
|
635 |
+
"loss": 7.3548,
|
636 |
+
"step": 85
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.99,
|
640 |
+
"grad_norm": 16.40313028374367,
|
641 |
+
"learning_rate": 0.000172,
|
642 |
+
"loss": 7.3652,
|
643 |
+
"step": 86
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 1.0,
|
647 |
+
"grad_norm": 11.846265862818466,
|
648 |
+
"learning_rate": 0.000174,
|
649 |
+
"loss": 7.4363,
|
650 |
+
"step": 87
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 1.01,
|
654 |
+
"grad_norm": 11.82176337757903,
|
655 |
+
"learning_rate": 0.00017600000000000002,
|
656 |
+
"loss": 7.3967,
|
657 |
+
"step": 88
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.01,
|
661 |
+
"eval_loss": 7.461406707763672,
|
662 |
+
"eval_runtime": 1.3867,
|
663 |
+
"eval_samples_per_second": 13.702,
|
664 |
+
"eval_steps_per_second": 3.606,
|
665 |
+
"step": 88
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 1.02,
|
669 |
+
"grad_norm": 14.25806078550941,
|
670 |
+
"learning_rate": 0.00017800000000000002,
|
671 |
+
"loss": 7.3814,
|
672 |
+
"step": 89
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 1.03,
|
676 |
+
"grad_norm": 10.077089336320658,
|
677 |
+
"learning_rate": 0.00018,
|
678 |
+
"loss": 7.2599,
|
679 |
+
"step": 90
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 1.01,
|
683 |
+
"grad_norm": 15.159363102480643,
|
684 |
+
"learning_rate": 0.000182,
|
685 |
+
"loss": 7.5719,
|
686 |
+
"step": 91
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.02,
|
690 |
+
"grad_norm": 14.678683877513562,
|
691 |
+
"learning_rate": 0.00018400000000000003,
|
692 |
+
"loss": 7.4794,
|
693 |
+
"step": 92
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.03,
|
697 |
+
"grad_norm": 16.396549401486602,
|
698 |
+
"learning_rate": 0.00018600000000000002,
|
699 |
+
"loss": 7.6211,
|
700 |
+
"step": 93
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 1.05,
|
704 |
+
"grad_norm": 15.078668930441678,
|
705 |
+
"learning_rate": 0.000188,
|
706 |
+
"loss": 7.3625,
|
707 |
+
"step": 94
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 1.06,
|
711 |
+
"grad_norm": 13.546080322892589,
|
712 |
+
"learning_rate": 0.00019,
|
713 |
+
"loss": 7.3016,
|
714 |
+
"step": 95
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 1.07,
|
718 |
+
"grad_norm": 18.231949750348118,
|
719 |
+
"learning_rate": 0.000192,
|
720 |
+
"loss": 7.386,
|
721 |
+
"step": 96
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.08,
|
725 |
+
"grad_norm": 12.444086372431334,
|
726 |
+
"learning_rate": 0.000194,
|
727 |
+
"loss": 7.5534,
|
728 |
+
"step": 97
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 1.09,
|
732 |
+
"grad_norm": 9.994459143045797,
|
733 |
+
"learning_rate": 0.000196,
|
734 |
+
"loss": 7.4254,
|
735 |
+
"step": 98
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 1.1,
|
739 |
+
"grad_norm": 14.889247706503676,
|
740 |
+
"learning_rate": 0.00019800000000000002,
|
741 |
+
"loss": 7.3938,
|
742 |
+
"step": 99
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 1.11,
|
746 |
+
"grad_norm": 19.194847464605004,
|
747 |
+
"learning_rate": 0.0002,
|
748 |
+
"loss": 7.3875,
|
749 |
+
"step": 100
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 1.13,
|
753 |
+
"grad_norm": 19.234057674068023,
|
754 |
+
"learning_rate": 0.00019998096274980728,
|
755 |
+
"loss": 7.348,
|
756 |
+
"step": 101
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 1.14,
|
760 |
+
"grad_norm": 10.248320279074052,
|
761 |
+
"learning_rate": 0.000199923858247567,
|
762 |
+
"loss": 7.2365,
|
763 |
+
"step": 102
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 1.15,
|
767 |
+
"grad_norm": 15.579201434411983,
|
768 |
+
"learning_rate": 0.00019982870823553308,
|
769 |
+
"loss": 7.2351,
|
770 |
+
"step": 103
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 1.16,
|
774 |
+
"grad_norm": 10.951732160571428,
|
775 |
+
"learning_rate": 0.00019969554894159723,
|
776 |
+
"loss": 7.4413,
|
777 |
+
"step": 104
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.17,
|
781 |
+
"grad_norm": 12.034336556190219,
|
782 |
+
"learning_rate": 0.00019952443106549533,
|
783 |
+
"loss": 7.4256,
|
784 |
+
"step": 105
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 1.18,
|
788 |
+
"grad_norm": 11.555864069154051,
|
789 |
+
"learning_rate": 0.00019931541975950378,
|
790 |
+
"loss": 7.0947,
|
791 |
+
"step": 106
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 1.2,
|
795 |
+
"grad_norm": 8.079125584036722,
|
796 |
+
"learning_rate": 0.00019906859460363307,
|
797 |
+
"loss": 7.3727,
|
798 |
+
"step": 107
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 1.21,
|
802 |
+
"grad_norm": 10.901301706963714,
|
803 |
+
"learning_rate": 0.00019878404957532814,
|
804 |
+
"loss": 7.2419,
|
805 |
+
"step": 108
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 1.22,
|
809 |
+
"grad_norm": 9.771076993744128,
|
810 |
+
"learning_rate": 0.0001984618930136869,
|
811 |
+
"loss": 7.2896,
|
812 |
+
"step": 109
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.23,
|
816 |
+
"grad_norm": 11.395240298688034,
|
817 |
+
"learning_rate": 0.00019810224757821064,
|
818 |
+
"loss": 7.2567,
|
819 |
+
"step": 110
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.23,
|
823 |
+
"eval_loss": 7.299312591552734,
|
824 |
+
"eval_runtime": 1.381,
|
825 |
+
"eval_samples_per_second": 13.758,
|
826 |
+
"eval_steps_per_second": 3.621,
|
827 |
+
"step": 110
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 1.24,
|
831 |
+
"grad_norm": 11.839939762683946,
|
832 |
+
"learning_rate": 0.00019770525020210204,
|
833 |
+
"loss": 7.3145,
|
834 |
+
"step": 111
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 1.25,
|
838 |
+
"grad_norm": 13.454044820108352,
|
839 |
+
"learning_rate": 0.0001972710520401287,
|
840 |
+
"loss": 7.3279,
|
841 |
+
"step": 112
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.26,
|
845 |
+
"grad_norm": 10.349510041217494,
|
846 |
+
"learning_rate": 0.0001967998184110713,
|
847 |
+
"loss": 7.0995,
|
848 |
+
"step": 113
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 1.28,
|
852 |
+
"grad_norm": 11.299695940906268,
|
853 |
+
"learning_rate": 0.00019629172873477995,
|
854 |
+
"loss": 7.1545,
|
855 |
+
"step": 114
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 1.29,
|
859 |
+
"grad_norm": 10.300523126150598,
|
860 |
+
"learning_rate": 0.00019574697646386027,
|
861 |
+
"loss": 7.2619,
|
862 |
+
"step": 115
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 1.3,
|
866 |
+
"grad_norm": 12.280692750358627,
|
867 |
+
"learning_rate": 0.0001951657690100178,
|
868 |
+
"loss": 7.4703,
|
869 |
+
"step": 116
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 1.31,
|
873 |
+
"grad_norm": 11.308344462386193,
|
874 |
+
"learning_rate": 0.0001945483276650868,
|
875 |
+
"loss": 7.2927,
|
876 |
+
"step": 117
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 1.32,
|
880 |
+
"grad_norm": 9.46182612207882,
|
881 |
+
"learning_rate": 0.0001938948875167745,
|
882 |
+
"loss": 7.1097,
|
883 |
+
"step": 118
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 1.33,
|
887 |
+
"grad_norm": 8.495214573764272,
|
888 |
+
"learning_rate": 0.00019320569735915271,
|
889 |
+
"loss": 7.2199,
|
890 |
+
"step": 119
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 1.34,
|
894 |
+
"grad_norm": 10.888318204738358,
|
895 |
+
"learning_rate": 0.00019248101959793066,
|
896 |
+
"loss": 7.4214,
|
897 |
+
"step": 120
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 1.36,
|
901 |
+
"grad_norm": 15.655909856272627,
|
902 |
+
"learning_rate": 0.00019172113015054532,
|
903 |
+
"loss": 7.4141,
|
904 |
+
"step": 121
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 1.37,
|
908 |
+
"grad_norm": 14.348570302527095,
|
909 |
+
"learning_rate": 0.00019092631834110723,
|
910 |
+
"loss": 7.2034,
|
911 |
+
"step": 122
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 1.38,
|
915 |
+
"grad_norm": 11.216620878113865,
|
916 |
+
"learning_rate": 0.0001900968867902419,
|
917 |
+
"loss": 7.1925,
|
918 |
+
"step": 123
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 1.39,
|
922 |
+
"grad_norm": 15.214529842718143,
|
923 |
+
"learning_rate": 0.00018923315129986835,
|
924 |
+
"loss": 7.204,
|
925 |
+
"step": 124
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 1.4,
|
929 |
+
"grad_norm": 24.933551829531577,
|
930 |
+
"learning_rate": 0.00018833544073295917,
|
931 |
+
"loss": 7.5231,
|
932 |
+
"step": 125
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1.41,
|
936 |
+
"grad_norm": 12.291980045440198,
|
937 |
+
"learning_rate": 0.00018740409688832764,
|
938 |
+
"loss": 7.2323,
|
939 |
+
"step": 126
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.43,
|
943 |
+
"grad_norm": 19.503396545387695,
|
944 |
+
"learning_rate": 0.00018643947437048944,
|
945 |
+
"loss": 7.3214,
|
946 |
+
"step": 127
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.44,
|
950 |
+
"grad_norm": 13.982404823681808,
|
951 |
+
"learning_rate": 0.00018544194045464886,
|
952 |
+
"loss": 7.4008,
|
953 |
+
"step": 128
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 1.45,
|
957 |
+
"grad_norm": 13.775851829485163,
|
958 |
+
"learning_rate": 0.00018441187494686053,
|
959 |
+
"loss": 7.2854,
|
960 |
+
"step": 129
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 1.46,
|
964 |
+
"grad_norm": 16.44073199273777,
|
965 |
+
"learning_rate": 0.0001833496700394202,
|
966 |
+
"loss": 7.4218,
|
967 |
+
"step": 130
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 1.47,
|
971 |
+
"grad_norm": 21.66328419423237,
|
972 |
+
"learning_rate": 0.00018225573016153945,
|
973 |
+
"loss": 7.3589,
|
974 |
+
"step": 131
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.48,
|
978 |
+
"grad_norm": 14.027278482513156,
|
979 |
+
"learning_rate": 0.00018113047182536127,
|
980 |
+
"loss": 7.3329,
|
981 |
+
"step": 132
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.48,
|
985 |
+
"eval_loss": 7.374873161315918,
|
986 |
+
"eval_runtime": 1.3815,
|
987 |
+
"eval_samples_per_second": 13.753,
|
988 |
+
"eval_steps_per_second": 3.619,
|
989 |
+
"step": 132
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.49,
|
993 |
+
"grad_norm": 10.89412121909016,
|
994 |
+
"learning_rate": 0.00017997432346737524,
|
995 |
+
"loss": 7.3277,
|
996 |
+
"step": 133
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.51,
|
1000 |
+
"grad_norm": 18.182727305484867,
|
1001 |
+
"learning_rate": 0.00017878772528529232,
|
1002 |
+
"loss": 7.3505,
|
1003 |
+
"step": 134
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.52,
|
1007 |
+
"grad_norm": 18.738647279231998,
|
1008 |
+
"learning_rate": 0.000177571129070442,
|
1009 |
+
"loss": 7.4395,
|
1010 |
+
"step": 135
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.53,
|
1014 |
+
"grad_norm": 8.544634593385059,
|
1015 |
+
"learning_rate": 0.00017632499803575474,
|
1016 |
+
"loss": 7.3132,
|
1017 |
+
"step": 136
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.54,
|
1021 |
+
"grad_norm": 23.787945119488832,
|
1022 |
+
"learning_rate": 0.00017504980663939613,
|
1023 |
+
"loss": 7.3635,
|
1024 |
+
"step": 137
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.55,
|
1028 |
+
"grad_norm": 15.988837162794528,
|
1029 |
+
"learning_rate": 0.00017374604040411935,
|
1030 |
+
"loss": 7.298,
|
1031 |
+
"step": 138
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.56,
|
1035 |
+
"grad_norm": 8.594141503866256,
|
1036 |
+
"learning_rate": 0.00017241419573240462,
|
1037 |
+
"loss": 7.2263,
|
1038 |
+
"step": 139
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.57,
|
1042 |
+
"grad_norm": 10.834111660116264,
|
1043 |
+
"learning_rate": 0.00017105477971745666,
|
1044 |
+
"loss": 7.2234,
|
1045 |
+
"step": 140
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.59,
|
1049 |
+
"grad_norm": 20.898663112099943,
|
1050 |
+
"learning_rate": 0.00016966830995013133,
|
1051 |
+
"loss": 7.4312,
|
1052 |
+
"step": 141
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.6,
|
1056 |
+
"grad_norm": 9.882602517532073,
|
1057 |
+
"learning_rate": 0.00016825531432186543,
|
1058 |
+
"loss": 7.3389,
|
1059 |
+
"step": 142
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.61,
|
1063 |
+
"grad_norm": 7.435249821686469,
|
1064 |
+
"learning_rate": 0.00016681633082368498,
|
1065 |
+
"loss": 7.2015,
|
1066 |
+
"step": 143
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.62,
|
1070 |
+
"grad_norm": 13.215068331486576,
|
1071 |
+
"learning_rate": 0.0001653519073413675,
|
1072 |
+
"loss": 7.1425,
|
1073 |
+
"step": 144
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.63,
|
1077 |
+
"grad_norm": 11.754841557793458,
|
1078 |
+
"learning_rate": 0.00016386260144683745,
|
1079 |
+
"loss": 7.3101,
|
1080 |
+
"step": 145
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.64,
|
1084 |
+
"grad_norm": 7.674786980372276,
|
1085 |
+
"learning_rate": 0.00016234898018587337,
|
1086 |
+
"loss": 7.1703,
|
1087 |
+
"step": 146
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.66,
|
1091 |
+
"grad_norm": 8.30389279917059,
|
1092 |
+
"learning_rate": 0.00016081161986220807,
|
1093 |
+
"loss": 7.2516,
|
1094 |
+
"step": 147
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.67,
|
1098 |
+
"grad_norm": 14.325137493545546,
|
1099 |
+
"learning_rate": 0.00015925110581810394,
|
1100 |
+
"loss": 7.3326,
|
1101 |
+
"step": 148
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.68,
|
1105 |
+
"grad_norm": 9.943124774719692,
|
1106 |
+
"learning_rate": 0.00015766803221148673,
|
1107 |
+
"loss": 7.5501,
|
1108 |
+
"step": 149
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.69,
|
1112 |
+
"grad_norm": 11.710815673357324,
|
1113 |
+
"learning_rate": 0.00015606300178972287,
|
1114 |
+
"loss": 7.3344,
|
1115 |
+
"step": 150
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.7,
|
1119 |
+
"grad_norm": 8.287278539768234,
|
1120 |
+
"learning_rate": 0.00015443662566012645,
|
1121 |
+
"loss": 7.2426,
|
1122 |
+
"step": 151
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.71,
|
1126 |
+
"grad_norm": 8.045767995001754,
|
1127 |
+
"learning_rate": 0.00015278952305728324,
|
1128 |
+
"loss": 7.2319,
|
1129 |
+
"step": 152
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.72,
|
1133 |
+
"grad_norm": 16.213767636990735,
|
1134 |
+
"learning_rate": 0.00015112232110728015,
|
1135 |
+
"loss": 7.2226,
|
1136 |
+
"step": 153
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.74,
|
1140 |
+
"grad_norm": 10.115986520778595,
|
1141 |
+
"learning_rate": 0.00014943565458893,
|
1142 |
+
"loss": 7.0671,
|
1143 |
+
"step": 154
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.74,
|
1147 |
+
"eval_loss": 7.336472511291504,
|
1148 |
+
"eval_runtime": 1.3763,
|
1149 |
+
"eval_samples_per_second": 13.806,
|
1150 |
+
"eval_steps_per_second": 3.633,
|
1151 |
+
"step": 154
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 1.75,
|
1155 |
+
"grad_norm": 7.370162670560762,
|
1156 |
+
"learning_rate": 0.00014773016569208283,
|
1157 |
+
"loss": 7.2456,
|
1158 |
+
"step": 155
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 1.76,
|
1162 |
+
"grad_norm": 14.854609514494987,
|
1163 |
+
"learning_rate": 0.00014600650377311522,
|
1164 |
+
"loss": 7.0447,
|
1165 |
+
"step": 156
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 1.77,
|
1169 |
+
"grad_norm": 9.984605765623492,
|
1170 |
+
"learning_rate": 0.0001442653251076912,
|
1171 |
+
"loss": 7.1948,
|
1172 |
+
"step": 157
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1.78,
|
1176 |
+
"grad_norm": 11.053561117527067,
|
1177 |
+
"learning_rate": 0.00014250729264088843,
|
1178 |
+
"loss": 7.1485,
|
1179 |
+
"step": 158
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.79,
|
1183 |
+
"grad_norm": 11.604464862126479,
|
1184 |
+
"learning_rate": 0.00014073307573478526,
|
1185 |
+
"loss": 7.4198,
|
1186 |
+
"step": 159
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 1.8,
|
1190 |
+
"grad_norm": 8.62267592810566,
|
1191 |
+
"learning_rate": 0.00013894334991360448,
|
1192 |
+
"loss": 7.3045,
|
1193 |
+
"step": 160
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 1.82,
|
1197 |
+
"grad_norm": 10.961255591651343,
|
1198 |
+
"learning_rate": 0.00013713879660651068,
|
1199 |
+
"loss": 6.9983,
|
1200 |
+
"step": 161
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 1.83,
|
1204 |
+
"grad_norm": 11.12104950103157,
|
1205 |
+
"learning_rate": 0.0001353201028881598,
|
1206 |
+
"loss": 7.1046,
|
1207 |
+
"step": 162
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 1.84,
|
1211 |
+
"grad_norm": 8.807345567053673,
|
1212 |
+
"learning_rate": 0.00013348796121709862,
|
1213 |
+
"loss": 7.3378,
|
1214 |
+
"step": 163
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.85,
|
1218 |
+
"grad_norm": 10.666053356976384,
|
1219 |
+
"learning_rate": 0.00013164306917211476,
|
1220 |
+
"loss": 7.0008,
|
1221 |
+
"step": 164
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.86,
|
1225 |
+
"grad_norm": 7.835224761952429,
|
1226 |
+
"learning_rate": 0.000129786129186637,
|
1227 |
+
"loss": 6.9881,
|
1228 |
+
"step": 165
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 1.87,
|
1232 |
+
"grad_norm": 19.4062633667929,
|
1233 |
+
"learning_rate": 0.00012791784828128724,
|
1234 |
+
"loss": 7.2579,
|
1235 |
+
"step": 166
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 1.89,
|
1239 |
+
"grad_norm": 10.113263144537674,
|
1240 |
+
"learning_rate": 0.00012603893779468604,
|
1241 |
+
"loss": 7.3091,
|
1242 |
+
"step": 167
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 1.9,
|
1246 |
+
"grad_norm": 10.870503515462726,
|
1247 |
+
"learning_rate": 0.0001241501131126138,
|
1248 |
+
"loss": 7.4527,
|
1249 |
+
"step": 168
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 1.91,
|
1253 |
+
"grad_norm": 8.533887294828766,
|
1254 |
+
"learning_rate": 0.00012225209339563145,
|
1255 |
+
"loss": 7.2855,
|
1256 |
+
"step": 169
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.92,
|
1260 |
+
"grad_norm": 13.486746604884923,
|
1261 |
+
"learning_rate": 0.0001203456013052634,
|
1262 |
+
"loss": 7.2705,
|
1263 |
+
"step": 170
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.93,
|
1267 |
+
"grad_norm": 10.69251762526038,
|
1268 |
+
"learning_rate": 0.00011843136272884794,
|
1269 |
+
"loss": 7.0932,
|
1270 |
+
"step": 171
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.94,
|
1274 |
+
"grad_norm": 9.124923914761991,
|
1275 |
+
"learning_rate": 0.00011651010650315923,
|
1276 |
+
"loss": 7.3754,
|
1277 |
+
"step": 172
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.95,
|
1281 |
+
"grad_norm": 13.481473855966252,
|
1282 |
+
"learning_rate": 0.00011458256413690633,
|
1283 |
+
"loss": 7.3104,
|
1284 |
+
"step": 173
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 1.97,
|
1288 |
+
"grad_norm": 13.187202052506544,
|
1289 |
+
"learning_rate": 0.00011264946953221496,
|
1290 |
+
"loss": 7.3614,
|
1291 |
+
"step": 174
|
1292 |
+
}
|
1293 |
+
],
|
1294 |
+
"logging_steps": 1,
|
1295 |
+
"max_steps": 261,
|
1296 |
+
"num_input_tokens_seen": 0,
|
1297 |
+
"num_train_epochs": 3,
|
1298 |
+
"save_steps": 87,
|
1299 |
+
"total_flos": 1.2162710143343002e+17,
|
1300 |
+
"train_batch_size": 1,
|
1301 |
+
"trial_name": null,
|
1302 |
+
"trial_params": null
|
1303 |
+
}
|
checkpoint-174/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50b6bb5c490e8ef22b44507d2914da60c8e4f8c0f5671692c3b6485d1e90608
|
3 |
+
size 6395
|
checkpoint-174/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-261/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.0",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
checkpoint-261/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.38.0"
|
7 |
+
}
|
checkpoint-261/global_step261/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb9e894ca467d0c73041d1e16de366fb1601d4b7f663b96f9dee73cdcd36217c
|
3 |
+
size 21725204471
|
checkpoint-261/global_step261/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a9099d294f6558914ce9c10932240bb346ee76d393d1029f814cfda3ac23c26
|
3 |
+
size 21725205111
|
checkpoint-261/global_step261/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d0da12e540f5d78b442356be0e626094299e094fe03205d373dc868379a92aa
|
3 |
+
size 21725205111
|
checkpoint-261/global_step261/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc93f64204a586e12cb28e6a2cdbf812997662a01611a7719b67d4639c8cb628
|
3 |
+
size 21725204535
|
checkpoint-261/global_step261/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0779635d4d5861f77003df69765a486d96cf572c41481e59430cce5866f30f22
|
3 |
+
size 14483551747
|
checkpoint-261/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step261
|
checkpoint-261/model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31c532f5ad94151c66aece624fdd79259c5d5f80540419098a7ed105e64a18a1
|
3 |
+
size 4943162336
|
checkpoint-261/model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d76b471758354a6480eee81cb699f14ef71295c9d75ef0cefb9b197e04d1e82
|
3 |
+
size 4999819336
|
checkpoint-261/model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f0b233e5eda8c7f368f67ddcfd233c19e82631b65ebaeadcd31deb162db3080
|
3 |
+
size 4540516344
|
checkpoint-261/model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-261/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:926b70f6be2914cad151dafd0e3fa08f8277adb10199e8a7f2ff8aa53afc3223
|
3 |
+
size 17655
|
checkpoint-261/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0dcd6b2a15400db4e6e93af7cb8ba6e4e7e71f455c0122d4e3d19a0fef82b0a
|
3 |
+
size 17655
|
checkpoint-261/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:110606a79dab49d13dae27afec5afb7c2980f1440e4f9e7e66001b14e016dd7f
|
3 |
+
size 17655
|
checkpoint-261/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cba41cf1ae1502a93c8ba0d7ee52d2096158a0ee2d07bf8a606129bb127516a
|
3 |
+
size 17655
|
checkpoint-261/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67b1fbfe77e71f3535424c43de07cc0ffaacb05756dac4b0d55425ed3a2df41f
|
3 |
+
size 627
|
checkpoint-261/trainer_state.json
ADDED
@@ -0,0 +1,1944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.942528735632184,
|
5 |
+
"eval_steps": 22,
|
6 |
+
"global_step": 261,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 19.59183260405101,
|
14 |
+
"learning_rate": 2.0000000000000003e-06,
|
15 |
+
"loss": 1.3985,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"eval_loss": 1.5676738023757935,
|
21 |
+
"eval_runtime": 3.9227,
|
22 |
+
"eval_samples_per_second": 4.844,
|
23 |
+
"eval_steps_per_second": 1.275,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.02,
|
28 |
+
"grad_norm": 25.857640141956836,
|
29 |
+
"learning_rate": 4.000000000000001e-06,
|
30 |
+
"loss": 1.6073,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.03,
|
35 |
+
"grad_norm": 19.53747244629775,
|
36 |
+
"learning_rate": 6e-06,
|
37 |
+
"loss": 1.5784,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.05,
|
42 |
+
"grad_norm": 32.1611390841105,
|
43 |
+
"learning_rate": 8.000000000000001e-06,
|
44 |
+
"loss": 1.4924,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.06,
|
49 |
+
"grad_norm": 25.68491589990429,
|
50 |
+
"learning_rate": 1e-05,
|
51 |
+
"loss": 1.5215,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.07,
|
56 |
+
"grad_norm": 21.800722806654328,
|
57 |
+
"learning_rate": 1.2e-05,
|
58 |
+
"loss": 1.5508,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.08,
|
63 |
+
"grad_norm": 17.19812526688047,
|
64 |
+
"learning_rate": 1.4000000000000001e-05,
|
65 |
+
"loss": 1.205,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.09,
|
70 |
+
"grad_norm": 33.24510948526866,
|
71 |
+
"learning_rate": 1.6000000000000003e-05,
|
72 |
+
"loss": 1.6376,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.1,
|
77 |
+
"grad_norm": 14.986129451187,
|
78 |
+
"learning_rate": 1.8e-05,
|
79 |
+
"loss": 1.454,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.11,
|
84 |
+
"grad_norm": 17.517194747344856,
|
85 |
+
"learning_rate": 2e-05,
|
86 |
+
"loss": 1.6559,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.13,
|
91 |
+
"grad_norm": 18.22606604955052,
|
92 |
+
"learning_rate": 2.2000000000000003e-05,
|
93 |
+
"loss": 1.5816,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.14,
|
98 |
+
"grad_norm": 26.577328122239592,
|
99 |
+
"learning_rate": 2.4e-05,
|
100 |
+
"loss": 1.7884,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.15,
|
105 |
+
"grad_norm": 17.563463503652706,
|
106 |
+
"learning_rate": 2.6000000000000002e-05,
|
107 |
+
"loss": 1.4405,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.16,
|
112 |
+
"grad_norm": 19.98739837372538,
|
113 |
+
"learning_rate": 2.8000000000000003e-05,
|
114 |
+
"loss": 1.7512,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.17,
|
119 |
+
"grad_norm": 16.25364292099236,
|
120 |
+
"learning_rate": 3e-05,
|
121 |
+
"loss": 1.7037,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.18,
|
126 |
+
"grad_norm": 22.328347783615648,
|
127 |
+
"learning_rate": 3.2000000000000005e-05,
|
128 |
+
"loss": 1.5476,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.2,
|
133 |
+
"grad_norm": 20.71265405702363,
|
134 |
+
"learning_rate": 3.4000000000000007e-05,
|
135 |
+
"loss": 1.8108,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.21,
|
140 |
+
"grad_norm": 22.425069186679085,
|
141 |
+
"learning_rate": 3.6e-05,
|
142 |
+
"loss": 1.6751,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.22,
|
147 |
+
"grad_norm": 18.646553829771403,
|
148 |
+
"learning_rate": 3.8e-05,
|
149 |
+
"loss": 1.7696,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.23,
|
154 |
+
"grad_norm": 16.74801305116847,
|
155 |
+
"learning_rate": 4e-05,
|
156 |
+
"loss": 1.7699,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.24,
|
161 |
+
"grad_norm": 30.99364381661585,
|
162 |
+
"learning_rate": 4.2e-05,
|
163 |
+
"loss": 2.1827,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.25,
|
168 |
+
"grad_norm": 19.761245037191404,
|
169 |
+
"learning_rate": 4.4000000000000006e-05,
|
170 |
+
"loss": 1.4776,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.25,
|
175 |
+
"eval_loss": 1.856759786605835,
|
176 |
+
"eval_runtime": 1.4309,
|
177 |
+
"eval_samples_per_second": 13.279,
|
178 |
+
"eval_steps_per_second": 3.494,
|
179 |
+
"step": 22
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.26,
|
183 |
+
"grad_norm": 27.821861354666428,
|
184 |
+
"learning_rate": 4.600000000000001e-05,
|
185 |
+
"loss": 1.8677,
|
186 |
+
"step": 23
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.28,
|
190 |
+
"grad_norm": 22.80354998875929,
|
191 |
+
"learning_rate": 4.8e-05,
|
192 |
+
"loss": 1.7424,
|
193 |
+
"step": 24
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.29,
|
197 |
+
"grad_norm": 19.920321630615994,
|
198 |
+
"learning_rate": 5e-05,
|
199 |
+
"loss": 1.769,
|
200 |
+
"step": 25
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.3,
|
204 |
+
"grad_norm": 23.82621534355921,
|
205 |
+
"learning_rate": 5.2000000000000004e-05,
|
206 |
+
"loss": 1.8615,
|
207 |
+
"step": 26
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.31,
|
211 |
+
"grad_norm": 27.63826215875828,
|
212 |
+
"learning_rate": 5.4000000000000005e-05,
|
213 |
+
"loss": 1.7164,
|
214 |
+
"step": 27
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.32,
|
218 |
+
"grad_norm": 30.810269474286084,
|
219 |
+
"learning_rate": 5.6000000000000006e-05,
|
220 |
+
"loss": 1.8922,
|
221 |
+
"step": 28
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.33,
|
225 |
+
"grad_norm": 23.279443617002265,
|
226 |
+
"learning_rate": 5.8e-05,
|
227 |
+
"loss": 1.8507,
|
228 |
+
"step": 29
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.34,
|
232 |
+
"grad_norm": 18.091756285883704,
|
233 |
+
"learning_rate": 6e-05,
|
234 |
+
"loss": 1.6537,
|
235 |
+
"step": 30
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.36,
|
239 |
+
"grad_norm": 23.292568819411724,
|
240 |
+
"learning_rate": 6.2e-05,
|
241 |
+
"loss": 1.9125,
|
242 |
+
"step": 31
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.37,
|
246 |
+
"grad_norm": 52.21913805211888,
|
247 |
+
"learning_rate": 6.400000000000001e-05,
|
248 |
+
"loss": 1.8456,
|
249 |
+
"step": 32
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.38,
|
253 |
+
"grad_norm": 30.771918199992527,
|
254 |
+
"learning_rate": 6.6e-05,
|
255 |
+
"loss": 1.9398,
|
256 |
+
"step": 33
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.39,
|
260 |
+
"grad_norm": 40.19880102087157,
|
261 |
+
"learning_rate": 6.800000000000001e-05,
|
262 |
+
"loss": 2.3763,
|
263 |
+
"step": 34
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.4,
|
267 |
+
"grad_norm": 28.33779955799431,
|
268 |
+
"learning_rate": 7e-05,
|
269 |
+
"loss": 2.0815,
|
270 |
+
"step": 35
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.41,
|
274 |
+
"grad_norm": 54.379783823327905,
|
275 |
+
"learning_rate": 7.2e-05,
|
276 |
+
"loss": 2.1032,
|
277 |
+
"step": 36
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.43,
|
281 |
+
"grad_norm": 662.6041427579516,
|
282 |
+
"learning_rate": 7.4e-05,
|
283 |
+
"loss": 3.5917,
|
284 |
+
"step": 37
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.44,
|
288 |
+
"grad_norm": 4011.501090614335,
|
289 |
+
"learning_rate": 7.6e-05,
|
290 |
+
"loss": 7.3933,
|
291 |
+
"step": 38
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.45,
|
295 |
+
"grad_norm": 753.5816146908044,
|
296 |
+
"learning_rate": 7.800000000000001e-05,
|
297 |
+
"loss": 15.8371,
|
298 |
+
"step": 39
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.46,
|
302 |
+
"grad_norm": 291.86609997137384,
|
303 |
+
"learning_rate": 8e-05,
|
304 |
+
"loss": 9.0249,
|
305 |
+
"step": 40
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.47,
|
309 |
+
"grad_norm": 922.0326051718562,
|
310 |
+
"learning_rate": 8.2e-05,
|
311 |
+
"loss": 9.8922,
|
312 |
+
"step": 41
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.48,
|
316 |
+
"grad_norm": 115.68135873083658,
|
317 |
+
"learning_rate": 8.4e-05,
|
318 |
+
"loss": 8.2719,
|
319 |
+
"step": 42
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.49,
|
323 |
+
"grad_norm": 693.1702757980898,
|
324 |
+
"learning_rate": 8.6e-05,
|
325 |
+
"loss": 24.1699,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.51,
|
330 |
+
"grad_norm": 219.78828591396768,
|
331 |
+
"learning_rate": 8.800000000000001e-05,
|
332 |
+
"loss": 10.1246,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.51,
|
337 |
+
"eval_loss": 8.758976936340332,
|
338 |
+
"eval_runtime": 1.3819,
|
339 |
+
"eval_samples_per_second": 13.749,
|
340 |
+
"eval_steps_per_second": 3.618,
|
341 |
+
"step": 44
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.52,
|
345 |
+
"grad_norm": 101.32256273283853,
|
346 |
+
"learning_rate": 9e-05,
|
347 |
+
"loss": 9.1756,
|
348 |
+
"step": 45
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.53,
|
352 |
+
"grad_norm": 11.958039992364316,
|
353 |
+
"learning_rate": 9.200000000000001e-05,
|
354 |
+
"loss": 7.7273,
|
355 |
+
"step": 46
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.54,
|
359 |
+
"grad_norm": 3232.8188937829473,
|
360 |
+
"learning_rate": 9.4e-05,
|
361 |
+
"loss": 8.7486,
|
362 |
+
"step": 47
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.55,
|
366 |
+
"grad_norm": 34.97640980952823,
|
367 |
+
"learning_rate": 9.6e-05,
|
368 |
+
"loss": 8.0394,
|
369 |
+
"step": 48
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.56,
|
373 |
+
"grad_norm": 28.785233378323184,
|
374 |
+
"learning_rate": 9.8e-05,
|
375 |
+
"loss": 7.6241,
|
376 |
+
"step": 49
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.57,
|
380 |
+
"grad_norm": 734.1733446536996,
|
381 |
+
"learning_rate": 0.0001,
|
382 |
+
"loss": 7.7813,
|
383 |
+
"step": 50
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.59,
|
387 |
+
"grad_norm": 59.66290191764372,
|
388 |
+
"learning_rate": 0.00010200000000000001,
|
389 |
+
"loss": 7.6734,
|
390 |
+
"step": 51
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 0.6,
|
394 |
+
"grad_norm": 18.23606863385719,
|
395 |
+
"learning_rate": 0.00010400000000000001,
|
396 |
+
"loss": 7.8783,
|
397 |
+
"step": 52
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.61,
|
401 |
+
"grad_norm": 15.152500341579357,
|
402 |
+
"learning_rate": 0.00010600000000000002,
|
403 |
+
"loss": 7.6016,
|
404 |
+
"step": 53
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.62,
|
408 |
+
"grad_norm": 25.1062172290986,
|
409 |
+
"learning_rate": 0.00010800000000000001,
|
410 |
+
"loss": 7.7206,
|
411 |
+
"step": 54
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.63,
|
415 |
+
"grad_norm": 30.75760910048317,
|
416 |
+
"learning_rate": 0.00011000000000000002,
|
417 |
+
"loss": 7.7526,
|
418 |
+
"step": 55
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.64,
|
422 |
+
"grad_norm": 18.354297835205724,
|
423 |
+
"learning_rate": 0.00011200000000000001,
|
424 |
+
"loss": 7.5551,
|
425 |
+
"step": 56
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.66,
|
429 |
+
"grad_norm": 32.48061320811231,
|
430 |
+
"learning_rate": 0.00011399999999999999,
|
431 |
+
"loss": 7.6922,
|
432 |
+
"step": 57
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.67,
|
436 |
+
"grad_norm": 26.624723764338736,
|
437 |
+
"learning_rate": 0.000116,
|
438 |
+
"loss": 7.5791,
|
439 |
+
"step": 58
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.68,
|
443 |
+
"grad_norm": 13.92226298912218,
|
444 |
+
"learning_rate": 0.000118,
|
445 |
+
"loss": 7.3692,
|
446 |
+
"step": 59
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.69,
|
450 |
+
"grad_norm": 15.428105634893914,
|
451 |
+
"learning_rate": 0.00012,
|
452 |
+
"loss": 7.564,
|
453 |
+
"step": 60
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.7,
|
457 |
+
"grad_norm": 23.02235056392551,
|
458 |
+
"learning_rate": 0.000122,
|
459 |
+
"loss": 7.3948,
|
460 |
+
"step": 61
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.71,
|
464 |
+
"grad_norm": 16.470374126805776,
|
465 |
+
"learning_rate": 0.000124,
|
466 |
+
"loss": 7.4646,
|
467 |
+
"step": 62
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.72,
|
471 |
+
"grad_norm": 19.574553557429,
|
472 |
+
"learning_rate": 0.000126,
|
473 |
+
"loss": 7.3902,
|
474 |
+
"step": 63
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.74,
|
478 |
+
"grad_norm": 25.549182808604662,
|
479 |
+
"learning_rate": 0.00012800000000000002,
|
480 |
+
"loss": 7.5461,
|
481 |
+
"step": 64
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.75,
|
485 |
+
"grad_norm": 618.1147749407063,
|
486 |
+
"learning_rate": 0.00013000000000000002,
|
487 |
+
"loss": 8.157,
|
488 |
+
"step": 65
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.76,
|
492 |
+
"grad_norm": 66.0610660913446,
|
493 |
+
"learning_rate": 0.000132,
|
494 |
+
"loss": 8.1284,
|
495 |
+
"step": 66
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.76,
|
499 |
+
"eval_loss": 8.004860877990723,
|
500 |
+
"eval_runtime": 1.3748,
|
501 |
+
"eval_samples_per_second": 13.82,
|
502 |
+
"eval_steps_per_second": 3.637,
|
503 |
+
"step": 66
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.77,
|
507 |
+
"grad_norm": 41.635960690924975,
|
508 |
+
"learning_rate": 0.000134,
|
509 |
+
"loss": 8.0602,
|
510 |
+
"step": 67
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 0.78,
|
514 |
+
"grad_norm": 16.679869546723175,
|
515 |
+
"learning_rate": 0.00013600000000000003,
|
516 |
+
"loss": 7.8268,
|
517 |
+
"step": 68
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 0.79,
|
521 |
+
"grad_norm": 33.70142265056291,
|
522 |
+
"learning_rate": 0.000138,
|
523 |
+
"loss": 8.1206,
|
524 |
+
"step": 69
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.8,
|
528 |
+
"grad_norm": 43.29315748881759,
|
529 |
+
"learning_rate": 0.00014,
|
530 |
+
"loss": 7.7882,
|
531 |
+
"step": 70
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.82,
|
535 |
+
"grad_norm": 28.3799834727588,
|
536 |
+
"learning_rate": 0.000142,
|
537 |
+
"loss": 7.5454,
|
538 |
+
"step": 71
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 0.83,
|
542 |
+
"grad_norm": 30.911781055251613,
|
543 |
+
"learning_rate": 0.000144,
|
544 |
+
"loss": 7.7616,
|
545 |
+
"step": 72
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.84,
|
549 |
+
"grad_norm": 56.741836296758365,
|
550 |
+
"learning_rate": 0.000146,
|
551 |
+
"loss": 8.1145,
|
552 |
+
"step": 73
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.85,
|
556 |
+
"grad_norm": 13.967249574234195,
|
557 |
+
"learning_rate": 0.000148,
|
558 |
+
"loss": 7.6758,
|
559 |
+
"step": 74
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.86,
|
563 |
+
"grad_norm": 42.28071588262047,
|
564 |
+
"learning_rate": 0.00015000000000000001,
|
565 |
+
"loss": 7.5507,
|
566 |
+
"step": 75
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.87,
|
570 |
+
"grad_norm": 27.40577229308579,
|
571 |
+
"learning_rate": 0.000152,
|
572 |
+
"loss": 7.6852,
|
573 |
+
"step": 76
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.89,
|
577 |
+
"grad_norm": 21.422615778584905,
|
578 |
+
"learning_rate": 0.000154,
|
579 |
+
"loss": 7.6071,
|
580 |
+
"step": 77
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 0.9,
|
584 |
+
"grad_norm": 28.22569647336005,
|
585 |
+
"learning_rate": 0.00015600000000000002,
|
586 |
+
"loss": 7.5556,
|
587 |
+
"step": 78
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.91,
|
591 |
+
"grad_norm": 20.075502929468385,
|
592 |
+
"learning_rate": 0.00015800000000000002,
|
593 |
+
"loss": 7.529,
|
594 |
+
"step": 79
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.92,
|
598 |
+
"grad_norm": 14.896626626967638,
|
599 |
+
"learning_rate": 0.00016,
|
600 |
+
"loss": 7.5352,
|
601 |
+
"step": 80
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.93,
|
605 |
+
"grad_norm": 16.98565517398293,
|
606 |
+
"learning_rate": 0.000162,
|
607 |
+
"loss": 7.5734,
|
608 |
+
"step": 81
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.94,
|
612 |
+
"grad_norm": 17.76803489316823,
|
613 |
+
"learning_rate": 0.000164,
|
614 |
+
"loss": 7.591,
|
615 |
+
"step": 82
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.95,
|
619 |
+
"grad_norm": 15.601674972992182,
|
620 |
+
"learning_rate": 0.000166,
|
621 |
+
"loss": 7.4251,
|
622 |
+
"step": 83
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.97,
|
626 |
+
"grad_norm": 21.36580777081032,
|
627 |
+
"learning_rate": 0.000168,
|
628 |
+
"loss": 7.728,
|
629 |
+
"step": 84
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.98,
|
633 |
+
"grad_norm": 19.73380900316605,
|
634 |
+
"learning_rate": 0.00017,
|
635 |
+
"loss": 7.3548,
|
636 |
+
"step": 85
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.99,
|
640 |
+
"grad_norm": 16.40313028374367,
|
641 |
+
"learning_rate": 0.000172,
|
642 |
+
"loss": 7.3652,
|
643 |
+
"step": 86
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 1.0,
|
647 |
+
"grad_norm": 11.846265862818466,
|
648 |
+
"learning_rate": 0.000174,
|
649 |
+
"loss": 7.4363,
|
650 |
+
"step": 87
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 1.01,
|
654 |
+
"grad_norm": 11.82176337757903,
|
655 |
+
"learning_rate": 0.00017600000000000002,
|
656 |
+
"loss": 7.3967,
|
657 |
+
"step": 88
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.01,
|
661 |
+
"eval_loss": 7.461406707763672,
|
662 |
+
"eval_runtime": 1.3867,
|
663 |
+
"eval_samples_per_second": 13.702,
|
664 |
+
"eval_steps_per_second": 3.606,
|
665 |
+
"step": 88
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 1.02,
|
669 |
+
"grad_norm": 14.25806078550941,
|
670 |
+
"learning_rate": 0.00017800000000000002,
|
671 |
+
"loss": 7.3814,
|
672 |
+
"step": 89
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 1.03,
|
676 |
+
"grad_norm": 10.077089336320658,
|
677 |
+
"learning_rate": 0.00018,
|
678 |
+
"loss": 7.2599,
|
679 |
+
"step": 90
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 1.01,
|
683 |
+
"grad_norm": 15.159363102480643,
|
684 |
+
"learning_rate": 0.000182,
|
685 |
+
"loss": 7.5719,
|
686 |
+
"step": 91
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.02,
|
690 |
+
"grad_norm": 14.678683877513562,
|
691 |
+
"learning_rate": 0.00018400000000000003,
|
692 |
+
"loss": 7.4794,
|
693 |
+
"step": 92
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.03,
|
697 |
+
"grad_norm": 16.396549401486602,
|
698 |
+
"learning_rate": 0.00018600000000000002,
|
699 |
+
"loss": 7.6211,
|
700 |
+
"step": 93
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 1.05,
|
704 |
+
"grad_norm": 15.078668930441678,
|
705 |
+
"learning_rate": 0.000188,
|
706 |
+
"loss": 7.3625,
|
707 |
+
"step": 94
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 1.06,
|
711 |
+
"grad_norm": 13.546080322892589,
|
712 |
+
"learning_rate": 0.00019,
|
713 |
+
"loss": 7.3016,
|
714 |
+
"step": 95
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 1.07,
|
718 |
+
"grad_norm": 18.231949750348118,
|
719 |
+
"learning_rate": 0.000192,
|
720 |
+
"loss": 7.386,
|
721 |
+
"step": 96
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.08,
|
725 |
+
"grad_norm": 12.444086372431334,
|
726 |
+
"learning_rate": 0.000194,
|
727 |
+
"loss": 7.5534,
|
728 |
+
"step": 97
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 1.09,
|
732 |
+
"grad_norm": 9.994459143045797,
|
733 |
+
"learning_rate": 0.000196,
|
734 |
+
"loss": 7.4254,
|
735 |
+
"step": 98
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 1.1,
|
739 |
+
"grad_norm": 14.889247706503676,
|
740 |
+
"learning_rate": 0.00019800000000000002,
|
741 |
+
"loss": 7.3938,
|
742 |
+
"step": 99
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 1.11,
|
746 |
+
"grad_norm": 19.194847464605004,
|
747 |
+
"learning_rate": 0.0002,
|
748 |
+
"loss": 7.3875,
|
749 |
+
"step": 100
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 1.13,
|
753 |
+
"grad_norm": 19.234057674068023,
|
754 |
+
"learning_rate": 0.00019998096274980728,
|
755 |
+
"loss": 7.348,
|
756 |
+
"step": 101
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 1.14,
|
760 |
+
"grad_norm": 10.248320279074052,
|
761 |
+
"learning_rate": 0.000199923858247567,
|
762 |
+
"loss": 7.2365,
|
763 |
+
"step": 102
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 1.15,
|
767 |
+
"grad_norm": 15.579201434411983,
|
768 |
+
"learning_rate": 0.00019982870823553308,
|
769 |
+
"loss": 7.2351,
|
770 |
+
"step": 103
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 1.16,
|
774 |
+
"grad_norm": 10.951732160571428,
|
775 |
+
"learning_rate": 0.00019969554894159723,
|
776 |
+
"loss": 7.4413,
|
777 |
+
"step": 104
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.17,
|
781 |
+
"grad_norm": 12.034336556190219,
|
782 |
+
"learning_rate": 0.00019952443106549533,
|
783 |
+
"loss": 7.4256,
|
784 |
+
"step": 105
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 1.18,
|
788 |
+
"grad_norm": 11.555864069154051,
|
789 |
+
"learning_rate": 0.00019931541975950378,
|
790 |
+
"loss": 7.0947,
|
791 |
+
"step": 106
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 1.2,
|
795 |
+
"grad_norm": 8.079125584036722,
|
796 |
+
"learning_rate": 0.00019906859460363307,
|
797 |
+
"loss": 7.3727,
|
798 |
+
"step": 107
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 1.21,
|
802 |
+
"grad_norm": 10.901301706963714,
|
803 |
+
"learning_rate": 0.00019878404957532814,
|
804 |
+
"loss": 7.2419,
|
805 |
+
"step": 108
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 1.22,
|
809 |
+
"grad_norm": 9.771076993744128,
|
810 |
+
"learning_rate": 0.0001984618930136869,
|
811 |
+
"loss": 7.2896,
|
812 |
+
"step": 109
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.23,
|
816 |
+
"grad_norm": 11.395240298688034,
|
817 |
+
"learning_rate": 0.00019810224757821064,
|
818 |
+
"loss": 7.2567,
|
819 |
+
"step": 110
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.23,
|
823 |
+
"eval_loss": 7.299312591552734,
|
824 |
+
"eval_runtime": 1.381,
|
825 |
+
"eval_samples_per_second": 13.758,
|
826 |
+
"eval_steps_per_second": 3.621,
|
827 |
+
"step": 110
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 1.24,
|
831 |
+
"grad_norm": 11.839939762683946,
|
832 |
+
"learning_rate": 0.00019770525020210204,
|
833 |
+
"loss": 7.3145,
|
834 |
+
"step": 111
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 1.25,
|
838 |
+
"grad_norm": 13.454044820108352,
|
839 |
+
"learning_rate": 0.0001972710520401287,
|
840 |
+
"loss": 7.3279,
|
841 |
+
"step": 112
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.26,
|
845 |
+
"grad_norm": 10.349510041217494,
|
846 |
+
"learning_rate": 0.0001967998184110713,
|
847 |
+
"loss": 7.0995,
|
848 |
+
"step": 113
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 1.28,
|
852 |
+
"grad_norm": 11.299695940906268,
|
853 |
+
"learning_rate": 0.00019629172873477995,
|
854 |
+
"loss": 7.1545,
|
855 |
+
"step": 114
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 1.29,
|
859 |
+
"grad_norm": 10.300523126150598,
|
860 |
+
"learning_rate": 0.00019574697646386027,
|
861 |
+
"loss": 7.2619,
|
862 |
+
"step": 115
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 1.3,
|
866 |
+
"grad_norm": 12.280692750358627,
|
867 |
+
"learning_rate": 0.0001951657690100178,
|
868 |
+
"loss": 7.4703,
|
869 |
+
"step": 116
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 1.31,
|
873 |
+
"grad_norm": 11.308344462386193,
|
874 |
+
"learning_rate": 0.0001945483276650868,
|
875 |
+
"loss": 7.2927,
|
876 |
+
"step": 117
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 1.32,
|
880 |
+
"grad_norm": 9.46182612207882,
|
881 |
+
"learning_rate": 0.0001938948875167745,
|
882 |
+
"loss": 7.1097,
|
883 |
+
"step": 118
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 1.33,
|
887 |
+
"grad_norm": 8.495214573764272,
|
888 |
+
"learning_rate": 0.00019320569735915271,
|
889 |
+
"loss": 7.2199,
|
890 |
+
"step": 119
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 1.34,
|
894 |
+
"grad_norm": 10.888318204738358,
|
895 |
+
"learning_rate": 0.00019248101959793066,
|
896 |
+
"loss": 7.4214,
|
897 |
+
"step": 120
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 1.36,
|
901 |
+
"grad_norm": 15.655909856272627,
|
902 |
+
"learning_rate": 0.00019172113015054532,
|
903 |
+
"loss": 7.4141,
|
904 |
+
"step": 121
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 1.37,
|
908 |
+
"grad_norm": 14.348570302527095,
|
909 |
+
"learning_rate": 0.00019092631834110723,
|
910 |
+
"loss": 7.2034,
|
911 |
+
"step": 122
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 1.38,
|
915 |
+
"grad_norm": 11.216620878113865,
|
916 |
+
"learning_rate": 0.0001900968867902419,
|
917 |
+
"loss": 7.1925,
|
918 |
+
"step": 123
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 1.39,
|
922 |
+
"grad_norm": 15.214529842718143,
|
923 |
+
"learning_rate": 0.00018923315129986835,
|
924 |
+
"loss": 7.204,
|
925 |
+
"step": 124
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 1.4,
|
929 |
+
"grad_norm": 24.933551829531577,
|
930 |
+
"learning_rate": 0.00018833544073295917,
|
931 |
+
"loss": 7.5231,
|
932 |
+
"step": 125
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1.41,
|
936 |
+
"grad_norm": 12.291980045440198,
|
937 |
+
"learning_rate": 0.00018740409688832764,
|
938 |
+
"loss": 7.2323,
|
939 |
+
"step": 126
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.43,
|
943 |
+
"grad_norm": 19.503396545387695,
|
944 |
+
"learning_rate": 0.00018643947437048944,
|
945 |
+
"loss": 7.3214,
|
946 |
+
"step": 127
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.44,
|
950 |
+
"grad_norm": 13.982404823681808,
|
951 |
+
"learning_rate": 0.00018544194045464886,
|
952 |
+
"loss": 7.4008,
|
953 |
+
"step": 128
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 1.45,
|
957 |
+
"grad_norm": 13.775851829485163,
|
958 |
+
"learning_rate": 0.00018441187494686053,
|
959 |
+
"loss": 7.2854,
|
960 |
+
"step": 129
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 1.46,
|
964 |
+
"grad_norm": 16.44073199273777,
|
965 |
+
"learning_rate": 0.0001833496700394202,
|
966 |
+
"loss": 7.4218,
|
967 |
+
"step": 130
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 1.47,
|
971 |
+
"grad_norm": 21.66328419423237,
|
972 |
+
"learning_rate": 0.00018225573016153945,
|
973 |
+
"loss": 7.3589,
|
974 |
+
"step": 131
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.48,
|
978 |
+
"grad_norm": 14.027278482513156,
|
979 |
+
"learning_rate": 0.00018113047182536127,
|
980 |
+
"loss": 7.3329,
|
981 |
+
"step": 132
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.48,
|
985 |
+
"eval_loss": 7.374873161315918,
|
986 |
+
"eval_runtime": 1.3815,
|
987 |
+
"eval_samples_per_second": 13.753,
|
988 |
+
"eval_steps_per_second": 3.619,
|
989 |
+
"step": 132
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.49,
|
993 |
+
"grad_norm": 10.89412121909016,
|
994 |
+
"learning_rate": 0.00017997432346737524,
|
995 |
+
"loss": 7.3277,
|
996 |
+
"step": 133
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.51,
|
1000 |
+
"grad_norm": 18.182727305484867,
|
1001 |
+
"learning_rate": 0.00017878772528529232,
|
1002 |
+
"loss": 7.3505,
|
1003 |
+
"step": 134
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.52,
|
1007 |
+
"grad_norm": 18.738647279231998,
|
1008 |
+
"learning_rate": 0.000177571129070442,
|
1009 |
+
"loss": 7.4395,
|
1010 |
+
"step": 135
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.53,
|
1014 |
+
"grad_norm": 8.544634593385059,
|
1015 |
+
"learning_rate": 0.00017632499803575474,
|
1016 |
+
"loss": 7.3132,
|
1017 |
+
"step": 136
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.54,
|
1021 |
+
"grad_norm": 23.787945119488832,
|
1022 |
+
"learning_rate": 0.00017504980663939613,
|
1023 |
+
"loss": 7.3635,
|
1024 |
+
"step": 137
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.55,
|
1028 |
+
"grad_norm": 15.988837162794528,
|
1029 |
+
"learning_rate": 0.00017374604040411935,
|
1030 |
+
"loss": 7.298,
|
1031 |
+
"step": 138
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.56,
|
1035 |
+
"grad_norm": 8.594141503866256,
|
1036 |
+
"learning_rate": 0.00017241419573240462,
|
1037 |
+
"loss": 7.2263,
|
1038 |
+
"step": 139
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.57,
|
1042 |
+
"grad_norm": 10.834111660116264,
|
1043 |
+
"learning_rate": 0.00017105477971745666,
|
1044 |
+
"loss": 7.2234,
|
1045 |
+
"step": 140
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.59,
|
1049 |
+
"grad_norm": 20.898663112099943,
|
1050 |
+
"learning_rate": 0.00016966830995013133,
|
1051 |
+
"loss": 7.4312,
|
1052 |
+
"step": 141
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.6,
|
1056 |
+
"grad_norm": 9.882602517532073,
|
1057 |
+
"learning_rate": 0.00016825531432186543,
|
1058 |
+
"loss": 7.3389,
|
1059 |
+
"step": 142
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.61,
|
1063 |
+
"grad_norm": 7.435249821686469,
|
1064 |
+
"learning_rate": 0.00016681633082368498,
|
1065 |
+
"loss": 7.2015,
|
1066 |
+
"step": 143
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.62,
|
1070 |
+
"grad_norm": 13.215068331486576,
|
1071 |
+
"learning_rate": 0.0001653519073413675,
|
1072 |
+
"loss": 7.1425,
|
1073 |
+
"step": 144
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.63,
|
1077 |
+
"grad_norm": 11.754841557793458,
|
1078 |
+
"learning_rate": 0.00016386260144683745,
|
1079 |
+
"loss": 7.3101,
|
1080 |
+
"step": 145
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.64,
|
1084 |
+
"grad_norm": 7.674786980372276,
|
1085 |
+
"learning_rate": 0.00016234898018587337,
|
1086 |
+
"loss": 7.1703,
|
1087 |
+
"step": 146
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.66,
|
1091 |
+
"grad_norm": 8.30389279917059,
|
1092 |
+
"learning_rate": 0.00016081161986220807,
|
1093 |
+
"loss": 7.2516,
|
1094 |
+
"step": 147
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.67,
|
1098 |
+
"grad_norm": 14.325137493545546,
|
1099 |
+
"learning_rate": 0.00015925110581810394,
|
1100 |
+
"loss": 7.3326,
|
1101 |
+
"step": 148
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.68,
|
1105 |
+
"grad_norm": 9.943124774719692,
|
1106 |
+
"learning_rate": 0.00015766803221148673,
|
1107 |
+
"loss": 7.5501,
|
1108 |
+
"step": 149
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.69,
|
1112 |
+
"grad_norm": 11.710815673357324,
|
1113 |
+
"learning_rate": 0.00015606300178972287,
|
1114 |
+
"loss": 7.3344,
|
1115 |
+
"step": 150
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.7,
|
1119 |
+
"grad_norm": 8.287278539768234,
|
1120 |
+
"learning_rate": 0.00015443662566012645,
|
1121 |
+
"loss": 7.2426,
|
1122 |
+
"step": 151
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.71,
|
1126 |
+
"grad_norm": 8.045767995001754,
|
1127 |
+
"learning_rate": 0.00015278952305728324,
|
1128 |
+
"loss": 7.2319,
|
1129 |
+
"step": 152
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.72,
|
1133 |
+
"grad_norm": 16.213767636990735,
|
1134 |
+
"learning_rate": 0.00015112232110728015,
|
1135 |
+
"loss": 7.2226,
|
1136 |
+
"step": 153
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.74,
|
1140 |
+
"grad_norm": 10.115986520778595,
|
1141 |
+
"learning_rate": 0.00014943565458893,
|
1142 |
+
"loss": 7.0671,
|
1143 |
+
"step": 154
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.74,
|
1147 |
+
"eval_loss": 7.336472511291504,
|
1148 |
+
"eval_runtime": 1.3763,
|
1149 |
+
"eval_samples_per_second": 13.806,
|
1150 |
+
"eval_steps_per_second": 3.633,
|
1151 |
+
"step": 154
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 1.75,
|
1155 |
+
"grad_norm": 7.370162670560762,
|
1156 |
+
"learning_rate": 0.00014773016569208283,
|
1157 |
+
"loss": 7.2456,
|
1158 |
+
"step": 155
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 1.76,
|
1162 |
+
"grad_norm": 14.854609514494987,
|
1163 |
+
"learning_rate": 0.00014600650377311522,
|
1164 |
+
"loss": 7.0447,
|
1165 |
+
"step": 156
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 1.77,
|
1169 |
+
"grad_norm": 9.984605765623492,
|
1170 |
+
"learning_rate": 0.0001442653251076912,
|
1171 |
+
"loss": 7.1948,
|
1172 |
+
"step": 157
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1.78,
|
1176 |
+
"grad_norm": 11.053561117527067,
|
1177 |
+
"learning_rate": 0.00014250729264088843,
|
1178 |
+
"loss": 7.1485,
|
1179 |
+
"step": 158
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.79,
|
1183 |
+
"grad_norm": 11.604464862126479,
|
1184 |
+
"learning_rate": 0.00014073307573478526,
|
1185 |
+
"loss": 7.4198,
|
1186 |
+
"step": 159
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 1.8,
|
1190 |
+
"grad_norm": 8.62267592810566,
|
1191 |
+
"learning_rate": 0.00013894334991360448,
|
1192 |
+
"loss": 7.3045,
|
1193 |
+
"step": 160
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 1.82,
|
1197 |
+
"grad_norm": 10.961255591651343,
|
1198 |
+
"learning_rate": 0.00013713879660651068,
|
1199 |
+
"loss": 6.9983,
|
1200 |
+
"step": 161
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 1.83,
|
1204 |
+
"grad_norm": 11.12104950103157,
|
1205 |
+
"learning_rate": 0.0001353201028881598,
|
1206 |
+
"loss": 7.1046,
|
1207 |
+
"step": 162
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 1.84,
|
1211 |
+
"grad_norm": 8.807345567053673,
|
1212 |
+
"learning_rate": 0.00013348796121709862,
|
1213 |
+
"loss": 7.3378,
|
1214 |
+
"step": 163
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.85,
|
1218 |
+
"grad_norm": 10.666053356976384,
|
1219 |
+
"learning_rate": 0.00013164306917211476,
|
1220 |
+
"loss": 7.0008,
|
1221 |
+
"step": 164
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.86,
|
1225 |
+
"grad_norm": 7.835224761952429,
|
1226 |
+
"learning_rate": 0.000129786129186637,
|
1227 |
+
"loss": 6.9881,
|
1228 |
+
"step": 165
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 1.87,
|
1232 |
+
"grad_norm": 19.4062633667929,
|
1233 |
+
"learning_rate": 0.00012791784828128724,
|
1234 |
+
"loss": 7.2579,
|
1235 |
+
"step": 166
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 1.89,
|
1239 |
+
"grad_norm": 10.113263144537674,
|
1240 |
+
"learning_rate": 0.00012603893779468604,
|
1241 |
+
"loss": 7.3091,
|
1242 |
+
"step": 167
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 1.9,
|
1246 |
+
"grad_norm": 10.870503515462726,
|
1247 |
+
"learning_rate": 0.0001241501131126138,
|
1248 |
+
"loss": 7.4527,
|
1249 |
+
"step": 168
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 1.91,
|
1253 |
+
"grad_norm": 8.533887294828766,
|
1254 |
+
"learning_rate": 0.00012225209339563145,
|
1255 |
+
"loss": 7.2855,
|
1256 |
+
"step": 169
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.92,
|
1260 |
+
"grad_norm": 13.486746604884923,
|
1261 |
+
"learning_rate": 0.0001203456013052634,
|
1262 |
+
"loss": 7.2705,
|
1263 |
+
"step": 170
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.93,
|
1267 |
+
"grad_norm": 10.69251762526038,
|
1268 |
+
"learning_rate": 0.00011843136272884794,
|
1269 |
+
"loss": 7.0932,
|
1270 |
+
"step": 171
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.94,
|
1274 |
+
"grad_norm": 9.124923914761991,
|
1275 |
+
"learning_rate": 0.00011651010650315923,
|
1276 |
+
"loss": 7.3754,
|
1277 |
+
"step": 172
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.95,
|
1281 |
+
"grad_norm": 13.481473855966252,
|
1282 |
+
"learning_rate": 0.00011458256413690633,
|
1283 |
+
"loss": 7.3104,
|
1284 |
+
"step": 173
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 1.97,
|
1288 |
+
"grad_norm": 13.187202052506544,
|
1289 |
+
"learning_rate": 0.00011264946953221496,
|
1290 |
+
"loss": 7.3614,
|
1291 |
+
"step": 174
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 1.98,
|
1295 |
+
"grad_norm": 13.527193725705766,
|
1296 |
+
"learning_rate": 0.00011071155870519777,
|
1297 |
+
"loss": 7.2734,
|
1298 |
+
"step": 175
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.99,
|
1302 |
+
"grad_norm": 8.023369511183457,
|
1303 |
+
"learning_rate": 0.00010876956950572006,
|
1304 |
+
"loss": 7.4786,
|
1305 |
+
"step": 176
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.99,
|
1309 |
+
"eval_loss": 7.319369316101074,
|
1310 |
+
"eval_runtime": 1.3976,
|
1311 |
+
"eval_samples_per_second": 13.595,
|
1312 |
+
"eval_steps_per_second": 3.578,
|
1313 |
+
"step": 176
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 2.0,
|
1317 |
+
"grad_norm": 11.41077205951204,
|
1318 |
+
"learning_rate": 0.0001068242413364671,
|
1319 |
+
"loss": 7.2116,
|
1320 |
+
"step": 177
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 2.01,
|
1324 |
+
"grad_norm": 9.551865991569315,
|
1325 |
+
"learning_rate": 0.00010487631487142017,
|
1326 |
+
"loss": 7.2411,
|
1327 |
+
"step": 178
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"epoch": 2.02,
|
1331 |
+
"grad_norm": 11.576046488111642,
|
1332 |
+
"learning_rate": 0.00010292653177384876,
|
1333 |
+
"loss": 7.4401,
|
1334 |
+
"step": 179
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 2.01,
|
1338 |
+
"grad_norm": 9.356673167513755,
|
1339 |
+
"learning_rate": 0.00010097563441392581,
|
1340 |
+
"loss": 7.3184,
|
1341 |
+
"step": 180
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 2.02,
|
1345 |
+
"grad_norm": 12.119641565241189,
|
1346 |
+
"learning_rate": 9.90243655860742e-05,
|
1347 |
+
"loss": 7.2285,
|
1348 |
+
"step": 181
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"epoch": 2.03,
|
1352 |
+
"grad_norm": 11.06643382673938,
|
1353 |
+
"learning_rate": 9.707346822615128e-05,
|
1354 |
+
"loss": 7.1729,
|
1355 |
+
"step": 182
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 2.05,
|
1359 |
+
"grad_norm": 9.198991504624212,
|
1360 |
+
"learning_rate": 9.512368512857984e-05,
|
1361 |
+
"loss": 7.2619,
|
1362 |
+
"step": 183
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 2.06,
|
1366 |
+
"grad_norm": 14.240944645441582,
|
1367 |
+
"learning_rate": 9.317575866353292e-05,
|
1368 |
+
"loss": 7.5778,
|
1369 |
+
"step": 184
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"epoch": 2.07,
|
1373 |
+
"grad_norm": 8.473455381717486,
|
1374 |
+
"learning_rate": 9.123043049427995e-05,
|
1375 |
+
"loss": 7.2432,
|
1376 |
+
"step": 185
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 2.08,
|
1380 |
+
"grad_norm": 12.027303786674432,
|
1381 |
+
"learning_rate": 8.928844129480227e-05,
|
1382 |
+
"loss": 7.4036,
|
1383 |
+
"step": 186
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 2.09,
|
1387 |
+
"grad_norm": 10.45148339945213,
|
1388 |
+
"learning_rate": 8.735053046778506e-05,
|
1389 |
+
"loss": 7.2052,
|
1390 |
+
"step": 187
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"epoch": 2.1,
|
1394 |
+
"grad_norm": 12.816375890508084,
|
1395 |
+
"learning_rate": 8.541743586309365e-05,
|
1396 |
+
"loss": 7.1882,
|
1397 |
+
"step": 188
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 2.11,
|
1401 |
+
"grad_norm": 12.872264386256504,
|
1402 |
+
"learning_rate": 8.348989349684076e-05,
|
1403 |
+
"loss": 7.1129,
|
1404 |
+
"step": 189
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 2.13,
|
1408 |
+
"grad_norm": 8.712185045895534,
|
1409 |
+
"learning_rate": 8.156863727115211e-05,
|
1410 |
+
"loss": 7.3354,
|
1411 |
+
"step": 190
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 2.14,
|
1415 |
+
"grad_norm": 7.169962044034168,
|
1416 |
+
"learning_rate": 7.965439869473664e-05,
|
1417 |
+
"loss": 7.1493,
|
1418 |
+
"step": 191
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 2.15,
|
1422 |
+
"grad_norm": 9.20643667535514,
|
1423 |
+
"learning_rate": 7.774790660436858e-05,
|
1424 |
+
"loss": 7.1867,
|
1425 |
+
"step": 192
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 2.16,
|
1429 |
+
"grad_norm": 9.71231661001151,
|
1430 |
+
"learning_rate": 7.584988688738622e-05,
|
1431 |
+
"loss": 7.1941,
|
1432 |
+
"step": 193
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"epoch": 2.17,
|
1436 |
+
"grad_norm": 9.869652181292283,
|
1437 |
+
"learning_rate": 7.396106220531398e-05,
|
1438 |
+
"loss": 7.2606,
|
1439 |
+
"step": 194
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 2.18,
|
1443 |
+
"grad_norm": 7.820315914553451,
|
1444 |
+
"learning_rate": 7.208215171871277e-05,
|
1445 |
+
"loss": 7.1575,
|
1446 |
+
"step": 195
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 2.2,
|
1450 |
+
"grad_norm": 8.668852408202328,
|
1451 |
+
"learning_rate": 7.021387081336301e-05,
|
1452 |
+
"loss": 7.3339,
|
1453 |
+
"step": 196
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 2.21,
|
1457 |
+
"grad_norm": 6.97843034949997,
|
1458 |
+
"learning_rate": 6.835693082788525e-05,
|
1459 |
+
"loss": 7.307,
|
1460 |
+
"step": 197
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 2.22,
|
1464 |
+
"grad_norm": 16.571225038227503,
|
1465 |
+
"learning_rate": 6.651203878290139e-05,
|
1466 |
+
"loss": 7.3548,
|
1467 |
+
"step": 198
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 2.22,
|
1471 |
+
"eval_loss": 7.309223175048828,
|
1472 |
+
"eval_runtime": 1.3716,
|
1473 |
+
"eval_samples_per_second": 13.852,
|
1474 |
+
"eval_steps_per_second": 3.645,
|
1475 |
+
"step": 198
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 2.23,
|
1479 |
+
"grad_norm": 14.645439276497052,
|
1480 |
+
"learning_rate": 6.46798971118402e-05,
|
1481 |
+
"loss": 7.1198,
|
1482 |
+
"step": 199
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 2.24,
|
1486 |
+
"grad_norm": 11.180148474401758,
|
1487 |
+
"learning_rate": 6.286120339348935e-05,
|
1488 |
+
"loss": 7.383,
|
1489 |
+
"step": 200
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 2.25,
|
1493 |
+
"grad_norm": 8.297433608048966,
|
1494 |
+
"learning_rate": 6.105665008639557e-05,
|
1495 |
+
"loss": 7.0708,
|
1496 |
+
"step": 201
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 2.26,
|
1500 |
+
"grad_norm": 7.35350265603106,
|
1501 |
+
"learning_rate": 5.926692426521474e-05,
|
1502 |
+
"loss": 7.2686,
|
1503 |
+
"step": 202
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 2.28,
|
1507 |
+
"grad_norm": 10.931447125375616,
|
1508 |
+
"learning_rate": 5.749270735911158e-05,
|
1509 |
+
"loss": 7.0715,
|
1510 |
+
"step": 203
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 2.29,
|
1514 |
+
"grad_norm": 12.580996736421003,
|
1515 |
+
"learning_rate": 5.573467489230879e-05,
|
1516 |
+
"loss": 7.3576,
|
1517 |
+
"step": 204
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 2.3,
|
1521 |
+
"grad_norm": 12.648533406639174,
|
1522 |
+
"learning_rate": 5.399349622688479e-05,
|
1523 |
+
"loss": 7.3546,
|
1524 |
+
"step": 205
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 2.31,
|
1528 |
+
"grad_norm": 8.448979459452485,
|
1529 |
+
"learning_rate": 5.226983430791722e-05,
|
1530 |
+
"loss": 7.0968,
|
1531 |
+
"step": 206
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 2.32,
|
1535 |
+
"grad_norm": 14.75106031841705,
|
1536 |
+
"learning_rate": 5.0564345411070025e-05,
|
1537 |
+
"loss": 7.2726,
|
1538 |
+
"step": 207
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 2.33,
|
1542 |
+
"grad_norm": 7.623885276483663,
|
1543 |
+
"learning_rate": 4.8877678892719866e-05,
|
1544 |
+
"loss": 7.2646,
|
1545 |
+
"step": 208
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 2.34,
|
1549 |
+
"grad_norm": 11.112819218207525,
|
1550 |
+
"learning_rate": 4.721047694271676e-05,
|
1551 |
+
"loss": 7.1452,
|
1552 |
+
"step": 209
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 2.36,
|
1556 |
+
"grad_norm": 15.00591466641024,
|
1557 |
+
"learning_rate": 4.556337433987359e-05,
|
1558 |
+
"loss": 6.9634,
|
1559 |
+
"step": 210
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 2.37,
|
1563 |
+
"grad_norm": 9.000881151933429,
|
1564 |
+
"learning_rate": 4.393699821027716e-05,
|
1565 |
+
"loss": 7.2109,
|
1566 |
+
"step": 211
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 2.38,
|
1570 |
+
"grad_norm": 8.677018023760695,
|
1571 |
+
"learning_rate": 4.2331967788513295e-05,
|
1572 |
+
"loss": 7.1976,
|
1573 |
+
"step": 212
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 2.39,
|
1577 |
+
"grad_norm": 7.021254016561991,
|
1578 |
+
"learning_rate": 4.074889418189608e-05,
|
1579 |
+
"loss": 7.2308,
|
1580 |
+
"step": 213
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 2.4,
|
1584 |
+
"grad_norm": 14.097624320239541,
|
1585 |
+
"learning_rate": 3.9188380137791936e-05,
|
1586 |
+
"loss": 7.2678,
|
1587 |
+
"step": 214
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 2.41,
|
1591 |
+
"grad_norm": 7.660009091922155,
|
1592 |
+
"learning_rate": 3.7651019814126654e-05,
|
1593 |
+
"loss": 7.2609,
|
1594 |
+
"step": 215
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 2.43,
|
1598 |
+
"grad_norm": 6.879429170747529,
|
1599 |
+
"learning_rate": 3.613739855316257e-05,
|
1600 |
+
"loss": 7.1545,
|
1601 |
+
"step": 216
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 2.44,
|
1605 |
+
"grad_norm": 9.342549224552343,
|
1606 |
+
"learning_rate": 3.46480926586325e-05,
|
1607 |
+
"loss": 7.122,
|
1608 |
+
"step": 217
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 2.45,
|
1612 |
+
"grad_norm": 9.584840694689616,
|
1613 |
+
"learning_rate": 3.3183669176315045e-05,
|
1614 |
+
"loss": 7.2049,
|
1615 |
+
"step": 218
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 2.46,
|
1619 |
+
"grad_norm": 14.37215919620074,
|
1620 |
+
"learning_rate": 3.174468567813461e-05,
|
1621 |
+
"loss": 7.4374,
|
1622 |
+
"step": 219
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 2.47,
|
1626 |
+
"grad_norm": 6.257502820833114,
|
1627 |
+
"learning_rate": 3.033169004986873e-05,
|
1628 |
+
"loss": 7.1782,
|
1629 |
+
"step": 220
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 2.47,
|
1633 |
+
"eval_loss": 7.296360492706299,
|
1634 |
+
"eval_runtime": 1.3751,
|
1635 |
+
"eval_samples_per_second": 13.818,
|
1636 |
+
"eval_steps_per_second": 3.636,
|
1637 |
+
"step": 220
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 2.48,
|
1641 |
+
"grad_norm": 7.202404193022492,
|
1642 |
+
"learning_rate": 2.894522028254334e-05,
|
1643 |
+
"loss": 7.1248,
|
1644 |
+
"step": 221
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 2.49,
|
1648 |
+
"grad_norm": 11.03004064225623,
|
1649 |
+
"learning_rate": 2.7585804267595384e-05,
|
1650 |
+
"loss": 7.4726,
|
1651 |
+
"step": 222
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 2.51,
|
1655 |
+
"grad_norm": 10.208828744090669,
|
1656 |
+
"learning_rate": 2.6253959595880673e-05,
|
1657 |
+
"loss": 7.1886,
|
1658 |
+
"step": 223
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 2.52,
|
1662 |
+
"grad_norm": 7.194649499092706,
|
1663 |
+
"learning_rate": 2.495019336060387e-05,
|
1664 |
+
"loss": 7.2576,
|
1665 |
+
"step": 224
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 2.53,
|
1669 |
+
"grad_norm": 15.063508439238962,
|
1670 |
+
"learning_rate": 2.367500196424529e-05,
|
1671 |
+
"loss": 6.924,
|
1672 |
+
"step": 225
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 2.54,
|
1676 |
+
"grad_norm": 9.528135297299904,
|
1677 |
+
"learning_rate": 2.242887092955801e-05,
|
1678 |
+
"loss": 7.1941,
|
1679 |
+
"step": 226
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 2.55,
|
1683 |
+
"grad_norm": 7.719290154588222,
|
1684 |
+
"learning_rate": 2.121227471470768e-05,
|
1685 |
+
"loss": 7.3391,
|
1686 |
+
"step": 227
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 2.56,
|
1690 |
+
"grad_norm": 7.714834107984481,
|
1691 |
+
"learning_rate": 2.002567653262479e-05,
|
1692 |
+
"loss": 7.1969,
|
1693 |
+
"step": 228
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"epoch": 2.57,
|
1697 |
+
"grad_norm": 8.228923346547797,
|
1698 |
+
"learning_rate": 1.8869528174638752e-05,
|
1699 |
+
"loss": 7.1543,
|
1700 |
+
"step": 229
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 2.59,
|
1704 |
+
"grad_norm": 6.001756411009184,
|
1705 |
+
"learning_rate": 1.774426983846058e-05,
|
1706 |
+
"loss": 7.2465,
|
1707 |
+
"step": 230
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 2.6,
|
1711 |
+
"grad_norm": 10.434576481704424,
|
1712 |
+
"learning_rate": 1.6650329960579792e-05,
|
1713 |
+
"loss": 7.2623,
|
1714 |
+
"step": 231
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 2.61,
|
1718 |
+
"grad_norm": 8.095148267701724,
|
1719 |
+
"learning_rate": 1.5588125053139468e-05,
|
1720 |
+
"loss": 7.1761,
|
1721 |
+
"step": 232
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 2.62,
|
1725 |
+
"grad_norm": 9.145578669056132,
|
1726 |
+
"learning_rate": 1.4558059545351143e-05,
|
1727 |
+
"loss": 7.1295,
|
1728 |
+
"step": 233
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 2.63,
|
1732 |
+
"grad_norm": 7.413949304325555,
|
1733 |
+
"learning_rate": 1.3560525629510568e-05,
|
1734 |
+
"loss": 7.1572,
|
1735 |
+
"step": 234
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 2.64,
|
1739 |
+
"grad_norm": 8.238266895583749,
|
1740 |
+
"learning_rate": 1.259590311167238e-05,
|
1741 |
+
"loss": 7.2317,
|
1742 |
+
"step": 235
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 2.66,
|
1746 |
+
"grad_norm": 7.150286325977236,
|
1747 |
+
"learning_rate": 1.166455926704082e-05,
|
1748 |
+
"loss": 7.3381,
|
1749 |
+
"step": 236
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 2.67,
|
1753 |
+
"grad_norm": 10.918607427652104,
|
1754 |
+
"learning_rate": 1.0766848700131648e-05,
|
1755 |
+
"loss": 7.3925,
|
1756 |
+
"step": 237
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 2.68,
|
1760 |
+
"grad_norm": 6.6969446531973285,
|
1761 |
+
"learning_rate": 9.903113209758096e-06,
|
1762 |
+
"loss": 7.2799,
|
1763 |
+
"step": 238
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 2.69,
|
1767 |
+
"grad_norm": 13.477825461653845,
|
1768 |
+
"learning_rate": 9.073681658892775e-06,
|
1769 |
+
"loss": 6.901,
|
1770 |
+
"step": 239
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 2.7,
|
1774 |
+
"grad_norm": 6.783585528560174,
|
1775 |
+
"learning_rate": 8.278869849454718e-06,
|
1776 |
+
"loss": 7.2819,
|
1777 |
+
"step": 240
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 2.71,
|
1781 |
+
"grad_norm": 9.548057270672551,
|
1782 |
+
"learning_rate": 7.5189804020693536e-06,
|
1783 |
+
"loss": 7.1192,
|
1784 |
+
"step": 241
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 2.72,
|
1788 |
+
"grad_norm": 7.742180355619181,
|
1789 |
+
"learning_rate": 6.794302640847294e-06,
|
1790 |
+
"loss": 7.2729,
|
1791 |
+
"step": 242
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 2.72,
|
1795 |
+
"eval_loss": 7.292217254638672,
|
1796 |
+
"eval_runtime": 1.3839,
|
1797 |
+
"eval_samples_per_second": 13.729,
|
1798 |
+
"eval_steps_per_second": 3.613,
|
1799 |
+
"step": 242
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 2.74,
|
1803 |
+
"grad_norm": 10.845656873156827,
|
1804 |
+
"learning_rate": 6.1051124832254944e-06,
|
1805 |
+
"loss": 6.9693,
|
1806 |
+
"step": 243
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 2.75,
|
1810 |
+
"grad_norm": 10.323147542445835,
|
1811 |
+
"learning_rate": 5.451672334913216e-06,
|
1812 |
+
"loss": 7.3785,
|
1813 |
+
"step": 244
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 2.76,
|
1817 |
+
"grad_norm": 10.41796325752105,
|
1818 |
+
"learning_rate": 4.834230989982213e-06,
|
1819 |
+
"loss": 7.3632,
|
1820 |
+
"step": 245
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 2.77,
|
1824 |
+
"grad_norm": 6.590462249149956,
|
1825 |
+
"learning_rate": 4.253023536139733e-06,
|
1826 |
+
"loss": 7.279,
|
1827 |
+
"step": 246
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 2.78,
|
1831 |
+
"grad_norm": 9.637387713657647,
|
1832 |
+
"learning_rate": 3.7082712652200867e-06,
|
1833 |
+
"loss": 7.2857,
|
1834 |
+
"step": 247
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 2.79,
|
1838 |
+
"grad_norm": 5.983998578137723,
|
1839 |
+
"learning_rate": 3.2001815889286856e-06,
|
1840 |
+
"loss": 7.2269,
|
1841 |
+
"step": 248
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 2.8,
|
1845 |
+
"grad_norm": 6.750577266168699,
|
1846 |
+
"learning_rate": 2.728947959871353e-06,
|
1847 |
+
"loss": 7.2672,
|
1848 |
+
"step": 249
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 2.82,
|
1852 |
+
"grad_norm": 8.828265865856226,
|
1853 |
+
"learning_rate": 2.294749797897955e-06,
|
1854 |
+
"loss": 7.1355,
|
1855 |
+
"step": 250
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 2.83,
|
1859 |
+
"grad_norm": 8.092540989425222,
|
1860 |
+
"learning_rate": 1.8977524217893783e-06,
|
1861 |
+
"loss": 7.079,
|
1862 |
+
"step": 251
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 2.84,
|
1866 |
+
"grad_norm": 14.298932570519032,
|
1867 |
+
"learning_rate": 1.5381069863131037e-06,
|
1868 |
+
"loss": 7.1462,
|
1869 |
+
"step": 252
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 2.85,
|
1873 |
+
"grad_norm": 6.9722905081773465,
|
1874 |
+
"learning_rate": 1.2159504246718522e-06,
|
1875 |
+
"loss": 7.1766,
|
1876 |
+
"step": 253
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 2.86,
|
1880 |
+
"grad_norm": 8.429744971276516,
|
1881 |
+
"learning_rate": 9.314053963669245e-07,
|
1882 |
+
"loss": 7.3844,
|
1883 |
+
"step": 254
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 2.87,
|
1887 |
+
"grad_norm": 7.0927677230675386,
|
1888 |
+
"learning_rate": 6.845802404962243e-07,
|
1889 |
+
"loss": 7.3318,
|
1890 |
+
"step": 255
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 2.89,
|
1894 |
+
"grad_norm": 6.6033524293092265,
|
1895 |
+
"learning_rate": 4.7556893450466653e-07,
|
1896 |
+
"loss": 7.1159,
|
1897 |
+
"step": 256
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 2.9,
|
1901 |
+
"grad_norm": 9.59870072155561,
|
1902 |
+
"learning_rate": 3.044510584027771e-07,
|
1903 |
+
"loss": 7.3733,
|
1904 |
+
"step": 257
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 2.91,
|
1908 |
+
"grad_norm": 7.255692976305313,
|
1909 |
+
"learning_rate": 1.7129176446692984e-07,
|
1910 |
+
"loss": 7.2345,
|
1911 |
+
"step": 258
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 2.92,
|
1915 |
+
"grad_norm": 7.239401601436061,
|
1916 |
+
"learning_rate": 7.614175243301213e-08,
|
1917 |
+
"loss": 7.2672,
|
1918 |
+
"step": 259
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 2.93,
|
1922 |
+
"grad_norm": 6.342843427851908,
|
1923 |
+
"learning_rate": 1.9037250192732726e-08,
|
1924 |
+
"loss": 7.2741,
|
1925 |
+
"step": 260
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 2.94,
|
1929 |
+
"grad_norm": 8.76817744282957,
|
1930 |
+
"learning_rate": 0.0,
|
1931 |
+
"loss": 7.2543,
|
1932 |
+
"step": 261
|
1933 |
+
}
|
1934 |
+
],
|
1935 |
+
"logging_steps": 1,
|
1936 |
+
"max_steps": 261,
|
1937 |
+
"num_input_tokens_seen": 0,
|
1938 |
+
"num_train_epochs": 3,
|
1939 |
+
"save_steps": 87,
|
1940 |
+
"total_flos": 1.8244065215014502e+17,
|
1941 |
+
"train_batch_size": 1,
|
1942 |
+
"trial_name": null,
|
1943 |
+
"trial_params": null
|
1944 |
+
}
|
checkpoint-261/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50b6bb5c490e8ef22b44507d2914da60c8e4f8c0f5671692c3b6485d1e90608
|
3 |
+
size 6395
|
checkpoint-261/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-87/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.0",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
checkpoint-87/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.38.0"
|
7 |
+
}
|
checkpoint-87/global_step87/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa77e1c15fd13f4b39e2cb678b0bcc5bea3143286be846509a06dd79902b1ad9
|
3 |
+
size 21725204471
|
checkpoint-87/global_step87/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25db455cc5e6b2b7fc43cee07c88abf4b434ae7348970c9f02208f724fbdbb4c
|
3 |
+
size 21725205111
|
checkpoint-87/global_step87/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f15eb234b5d2535de1c90ebaa15957108ebb58dd18d19e4160f8f6e6f413492
|
3 |
+
size 21725205111
|
checkpoint-87/global_step87/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2c61628b310c63934ceb4cec5b83577d0227f9f766867eb3b59b25bdf3d4d62
|
3 |
+
size 21725204535
|
checkpoint-87/global_step87/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c57109fa782567ba8ae332992d54c6d5fc3ef338c1a4af21ca98a5c0912a07a
|
3 |
+
size 14483551747
|
checkpoint-87/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step87
|
checkpoint-87/model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58d3ad8b1fe0901cec33dc9668265daa215b322b436d771ea44d37b63589ee4b
|
3 |
+
size 4943162336
|