update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: dit-tiny_tobacco3482_kd_CEKD_t2.5_a0.7
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# dit-tiny_tobacco3482_kd_CEKD_t2.5_a0.7
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 3.2510
|
19 |
+
- Accuracy: 0.18
|
20 |
+
- Brier Loss: 0.8767
|
21 |
+
- Nll: 6.8039
|
22 |
+
- F1 Micro: 0.18
|
23 |
+
- F1 Macro: 0.0306
|
24 |
+
- Ece: 0.2513
|
25 |
+
- Aurc: 0.8508
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 16
|
49 |
+
- total_train_batch_size: 256
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:-------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| No log | 0.96 | 3 | 3.4586 | 0.145 | 0.8999 | 10.1587 | 0.145 | 0.0253 | 0.2221 | 0.8467 |
|
60 |
+
| No log | 1.96 | 6 | 3.4232 | 0.145 | 0.8946 | 10.5824 | 0.145 | 0.0253 | 0.2242 | 0.8475 |
|
61 |
+
| No log | 2.96 | 9 | 3.3704 | 0.16 | 0.8867 | 8.6135 | 0.16 | 0.0503 | 0.2171 | 0.8440 |
|
62 |
+
| No log | 3.96 | 12 | 3.3273 | 0.155 | 0.8807 | 6.5471 | 0.155 | 0.0274 | 0.2248 | 0.8831 |
|
63 |
+
| No log | 4.96 | 15 | 3.3006 | 0.155 | 0.8779 | 6.8045 | 0.155 | 0.0271 | 0.2331 | 0.8918 |
|
64 |
+
| No log | 5.96 | 18 | 3.2856 | 0.16 | 0.8773 | 8.2046 | 0.16 | 0.0329 | 0.2361 | 0.8956 |
|
65 |
+
| No log | 6.96 | 21 | 3.2758 | 0.18 | 0.8774 | 8.0738 | 0.18 | 0.0308 | 0.2561 | 0.8544 |
|
66 |
+
| No log | 7.96 | 24 | 3.2688 | 0.18 | 0.8778 | 7.1046 | 0.18 | 0.0308 | 0.2647 | 0.8524 |
|
67 |
+
| No log | 8.96 | 27 | 3.2630 | 0.18 | 0.8778 | 6.9910 | 0.18 | 0.0306 | 0.2591 | 0.8530 |
|
68 |
+
| No log | 9.96 | 30 | 3.2597 | 0.18 | 0.8778 | 6.9680 | 0.18 | 0.0306 | 0.2736 | 0.8538 |
|
69 |
+
| No log | 10.96 | 33 | 3.2573 | 0.18 | 0.8776 | 6.9547 | 0.18 | 0.0306 | 0.2698 | 0.8536 |
|
70 |
+
| No log | 11.96 | 36 | 3.2557 | 0.18 | 0.8775 | 6.9491 | 0.18 | 0.0306 | 0.2653 | 0.8533 |
|
71 |
+
| No log | 12.96 | 39 | 3.2546 | 0.18 | 0.8773 | 6.8987 | 0.18 | 0.0306 | 0.2606 | 0.8526 |
|
72 |
+
| No log | 13.96 | 42 | 3.2536 | 0.18 | 0.8771 | 6.8204 | 0.18 | 0.0306 | 0.2601 | 0.8523 |
|
73 |
+
| No log | 14.96 | 45 | 3.2528 | 0.18 | 0.8771 | 6.8141 | 0.18 | 0.0306 | 0.2521 | 0.8519 |
|
74 |
+
| No log | 15.96 | 48 | 3.2522 | 0.18 | 0.8769 | 6.8074 | 0.18 | 0.0306 | 0.2606 | 0.8517 |
|
75 |
+
| No log | 16.96 | 51 | 3.2519 | 0.18 | 0.8769 | 6.8077 | 0.18 | 0.0306 | 0.2607 | 0.8515 |
|
76 |
+
| No log | 17.96 | 54 | 3.2520 | 0.18 | 0.8769 | 6.8050 | 0.18 | 0.0306 | 0.2561 | 0.8510 |
|
77 |
+
| No log | 18.96 | 57 | 3.2520 | 0.18 | 0.8769 | 6.8057 | 0.18 | 0.0306 | 0.2519 | 0.8509 |
|
78 |
+
| No log | 19.96 | 60 | 3.2515 | 0.18 | 0.8768 | 6.8046 | 0.18 | 0.0306 | 0.2556 | 0.8507 |
|
79 |
+
| No log | 20.96 | 63 | 3.2514 | 0.18 | 0.8768 | 6.8048 | 0.18 | 0.0306 | 0.2515 | 0.8506 |
|
80 |
+
| No log | 21.96 | 66 | 3.2512 | 0.18 | 0.8767 | 6.8048 | 0.18 | 0.0306 | 0.2556 | 0.8508 |
|
81 |
+
| No log | 22.96 | 69 | 3.2510 | 0.18 | 0.8767 | 6.8045 | 0.18 | 0.0306 | 0.2513 | 0.8509 |
|
82 |
+
| No log | 23.96 | 72 | 3.2510 | 0.18 | 0.8767 | 6.8043 | 0.18 | 0.0306 | 0.2513 | 0.8508 |
|
83 |
+
| No log | 24.96 | 75 | 3.2510 | 0.18 | 0.8767 | 6.8039 | 0.18 | 0.0306 | 0.2513 | 0.8508 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.26.1
|
89 |
+
- Pytorch 1.13.1.post200
|
90 |
+
- Datasets 2.9.0
|
91 |
+
- Tokenizers 0.13.2
|