update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: dit-small_tobacco3482_simkd_CEKD_t1_aNone
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# dit-small_tobacco3482_simkd_CEKD_t1_aNone
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.9876
|
19 |
+
- Accuracy: 0.085
|
20 |
+
- Brier Loss: 0.8927
|
21 |
+
- Nll: 8.3272
|
22 |
+
- F1 Micro: 0.085
|
23 |
+
- F1 Macro: 0.0461
|
24 |
+
- Ece: 0.1645
|
25 |
+
- Aurc: 0.7988
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 4
|
46 |
+
- eval_batch_size: 4
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 16
|
49 |
+
- total_train_batch_size: 64
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| No log | 0.96 | 12 | 1.0049 | 0.08 | 0.8993 | 5.4663 | 0.08 | 0.0322 | 0.1476 | 0.8883 |
|
60 |
+
| No log | 1.96 | 24 | 1.0007 | 0.165 | 0.8988 | 5.5926 | 0.165 | 0.0284 | 0.2066 | 0.8251 |
|
61 |
+
| No log | 2.96 | 36 | 0.9994 | 0.16 | 0.8982 | 5.9135 | 0.16 | 0.0277 | 0.2100 | 0.8518 |
|
62 |
+
| No log | 3.96 | 48 | 0.9984 | 0.17 | 0.8975 | 6.1195 | 0.17 | 0.0574 | 0.2142 | 0.8153 |
|
63 |
+
| No log | 4.96 | 60 | 0.9976 | 0.19 | 0.8970 | 6.2724 | 0.19 | 0.0752 | 0.2294 | 0.8254 |
|
64 |
+
| No log | 5.96 | 72 | 0.9967 | 0.09 | 0.8968 | 6.3787 | 0.09 | 0.0315 | 0.1591 | 0.7950 |
|
65 |
+
| No log | 6.96 | 84 | 0.9958 | 0.065 | 0.8964 | 6.4218 | 0.065 | 0.0122 | 0.1433 | 0.8333 |
|
66 |
+
| No log | 7.96 | 96 | 0.9949 | 0.065 | 0.8960 | 6.5170 | 0.065 | 0.0122 | 0.1543 | 0.8344 |
|
67 |
+
| No log | 8.96 | 108 | 0.9941 | 0.065 | 0.8956 | 6.5572 | 0.065 | 0.0123 | 0.1545 | 0.8331 |
|
68 |
+
| No log | 9.96 | 120 | 0.9934 | 0.07 | 0.8954 | 6.6362 | 0.07 | 0.0304 | 0.1597 | 0.8313 |
|
69 |
+
| No log | 10.96 | 132 | 0.9926 | 0.07 | 0.8951 | 6.6430 | 0.07 | 0.0304 | 0.1576 | 0.8325 |
|
70 |
+
| No log | 11.96 | 144 | 0.9920 | 0.07 | 0.8948 | 6.6842 | 0.07 | 0.0304 | 0.1590 | 0.8225 |
|
71 |
+
| No log | 12.96 | 156 | 0.9914 | 0.07 | 0.8947 | 6.7731 | 0.07 | 0.0304 | 0.1619 | 0.8155 |
|
72 |
+
| No log | 13.96 | 168 | 0.9909 | 0.07 | 0.8944 | 6.8584 | 0.07 | 0.0304 | 0.1522 | 0.8128 |
|
73 |
+
| No log | 14.96 | 180 | 0.9904 | 0.07 | 0.8941 | 6.8161 | 0.07 | 0.0304 | 0.1524 | 0.8142 |
|
74 |
+
| No log | 15.96 | 192 | 0.9899 | 0.07 | 0.8940 | 7.3169 | 0.07 | 0.0304 | 0.1532 | 0.8109 |
|
75 |
+
| No log | 16.96 | 204 | 0.9894 | 0.07 | 0.8937 | 7.8481 | 0.07 | 0.0304 | 0.1531 | 0.8132 |
|
76 |
+
| No log | 17.96 | 216 | 0.9890 | 0.08 | 0.8935 | 8.3375 | 0.08 | 0.0439 | 0.1587 | 0.8002 |
|
77 |
+
| No log | 18.96 | 228 | 0.9886 | 0.07 | 0.8933 | 8.4250 | 0.07 | 0.0307 | 0.1536 | 0.8132 |
|
78 |
+
| No log | 19.96 | 240 | 0.9883 | 0.085 | 0.8931 | 8.4316 | 0.085 | 0.0445 | 0.1618 | 0.8014 |
|
79 |
+
| No log | 20.96 | 252 | 0.9880 | 0.075 | 0.8930 | 8.4395 | 0.075 | 0.0392 | 0.1566 | 0.8088 |
|
80 |
+
| No log | 21.96 | 264 | 0.9878 | 0.085 | 0.8929 | 8.3319 | 0.085 | 0.0476 | 0.1621 | 0.7956 |
|
81 |
+
| No log | 22.96 | 276 | 0.9877 | 0.08 | 0.8928 | 8.3274 | 0.08 | 0.0439 | 0.1594 | 0.8024 |
|
82 |
+
| No log | 23.96 | 288 | 0.9876 | 0.08 | 0.8927 | 8.3285 | 0.08 | 0.0440 | 0.1595 | 0.8014 |
|
83 |
+
| No log | 24.96 | 300 | 0.9876 | 0.085 | 0.8927 | 8.3272 | 0.085 | 0.0461 | 0.1645 | 0.7988 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.26.1
|
89 |
+
- Pytorch 1.13.1.post200
|
90 |
+
- Datasets 2.9.0
|
91 |
+
- Tokenizers 0.13.2
|