update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: dit-small_tobacco3482_kd_CEKD_t2.5_a0.7
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# dit-small_tobacco3482_kd_CEKD_t2.5_a0.7
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 3.1993
|
19 |
+
- Accuracy: 0.185
|
20 |
+
- Brier Loss: 0.8672
|
21 |
+
- Nll: 6.5703
|
22 |
+
- F1 Micro: 0.185
|
23 |
+
- F1 Macro: 0.0488
|
24 |
+
- Ece: 0.2594
|
25 |
+
- Aurc: 0.7367
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 16
|
49 |
+
- total_train_batch_size: 256
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| No log | 0.96 | 3 | 3.4684 | 0.06 | 0.9042 | 9.2910 | 0.06 | 0.0114 | 0.1755 | 0.9033 |
|
60 |
+
| No log | 1.96 | 6 | 3.3741 | 0.18 | 0.8886 | 6.5491 | 0.18 | 0.0305 | 0.2324 | 0.8055 |
|
61 |
+
| No log | 2.96 | 9 | 3.2779 | 0.18 | 0.8767 | 7.2662 | 0.18 | 0.0305 | 0.2493 | 0.8196 |
|
62 |
+
| No log | 3.96 | 12 | 3.2605 | 0.18 | 0.8816 | 7.0963 | 0.18 | 0.0305 | 0.2628 | 0.8140 |
|
63 |
+
| No log | 4.96 | 15 | 3.2592 | 0.185 | 0.8814 | 6.9350 | 0.185 | 0.0488 | 0.2584 | 0.7850 |
|
64 |
+
| No log | 5.96 | 18 | 3.2576 | 0.185 | 0.8782 | 6.3113 | 0.185 | 0.0488 | 0.2561 | 0.7731 |
|
65 |
+
| No log | 6.96 | 21 | 3.2540 | 0.185 | 0.8747 | 6.0058 | 0.185 | 0.0488 | 0.2446 | 0.7705 |
|
66 |
+
| No log | 7.96 | 24 | 3.2500 | 0.185 | 0.8731 | 5.9849 | 0.185 | 0.0488 | 0.2442 | 0.7669 |
|
67 |
+
| No log | 8.96 | 27 | 3.2430 | 0.185 | 0.8717 | 5.9785 | 0.185 | 0.0488 | 0.2483 | 0.7626 |
|
68 |
+
| No log | 9.96 | 30 | 3.2377 | 0.185 | 0.8711 | 6.2837 | 0.185 | 0.0488 | 0.2462 | 0.7609 |
|
69 |
+
| No log | 10.96 | 33 | 3.2332 | 0.185 | 0.8713 | 6.8641 | 0.185 | 0.0488 | 0.2560 | 0.7601 |
|
70 |
+
| No log | 11.96 | 36 | 3.2293 | 0.185 | 0.8719 | 6.8631 | 0.185 | 0.0488 | 0.2523 | 0.7587 |
|
71 |
+
| No log | 12.96 | 39 | 3.2246 | 0.185 | 0.8717 | 6.8535 | 0.185 | 0.0488 | 0.2526 | 0.7558 |
|
72 |
+
| No log | 13.96 | 42 | 3.2190 | 0.185 | 0.8709 | 6.8177 | 0.185 | 0.0488 | 0.2565 | 0.7533 |
|
73 |
+
| No log | 14.96 | 45 | 3.2134 | 0.185 | 0.8700 | 6.7894 | 0.185 | 0.0488 | 0.2630 | 0.7533 |
|
74 |
+
| No log | 15.96 | 48 | 3.2091 | 0.185 | 0.8691 | 6.7672 | 0.185 | 0.0488 | 0.2585 | 0.7500 |
|
75 |
+
| No log | 16.96 | 51 | 3.2069 | 0.185 | 0.8687 | 6.6512 | 0.185 | 0.0488 | 0.2536 | 0.7466 |
|
76 |
+
| No log | 17.96 | 54 | 3.2063 | 0.185 | 0.8682 | 6.5227 | 0.185 | 0.0488 | 0.2520 | 0.7429 |
|
77 |
+
| No log | 18.96 | 57 | 3.2057 | 0.185 | 0.8682 | 6.5119 | 0.185 | 0.0488 | 0.2514 | 0.7406 |
|
78 |
+
| No log | 19.96 | 60 | 3.2036 | 0.185 | 0.8678 | 6.5674 | 0.185 | 0.0488 | 0.2501 | 0.7385 |
|
79 |
+
| No log | 20.96 | 63 | 3.2023 | 0.185 | 0.8677 | 6.5709 | 0.185 | 0.0488 | 0.2506 | 0.7385 |
|
80 |
+
| No log | 21.96 | 66 | 3.2010 | 0.185 | 0.8675 | 6.5731 | 0.185 | 0.0488 | 0.2631 | 0.7376 |
|
81 |
+
| No log | 22.96 | 69 | 3.2000 | 0.185 | 0.8673 | 6.5723 | 0.185 | 0.0488 | 0.2591 | 0.7371 |
|
82 |
+
| No log | 23.96 | 72 | 3.1996 | 0.185 | 0.8673 | 6.5715 | 0.185 | 0.0488 | 0.2593 | 0.7368 |
|
83 |
+
| No log | 24.96 | 75 | 3.1993 | 0.185 | 0.8672 | 6.5703 | 0.185 | 0.0488 | 0.2594 | 0.7367 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.26.1
|
89 |
+
- Pytorch 1.13.1.post200
|
90 |
+
- Datasets 2.9.0
|
91 |
+
- Tokenizers 0.13.2
|