jondurbin commited on
Commit
39c6ca7
·
verified ·
1 Parent(s): 25b7579

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: internlm2-20b
4
+ license_link: https://huggingface.co/internlm/internlm2-20b#open-source-license
5
+ base_model: internlm/internlm2-20b
6
+ datasets:
7
+ - ai2_arc
8
+ - allenai/ultrafeedback_binarized_cleaned
9
+ - argilla/distilabel-intel-orca-dpo-pairs
10
+ - jondurbin/airoboros-3.2
11
+ - codeparrot/apps
12
+ - facebook/belebele
13
+ - bluemoon-fandom-1-1-rp-cleaned
14
+ - boolq
15
+ - camel-ai/biology
16
+ - camel-ai/chemistry
17
+ - camel-ai/math
18
+ - camel-ai/physics
19
+ - jondurbin/contextual-dpo-v0.1
20
+ - jondurbin/gutenberg-dpo-v0.1
21
+ - jondurbin/py-dpo-v0.1
22
+ - jondurbin/truthy-dpo-v0.1
23
+ - LDJnr/Capybara
24
+ - jondurbin/cinematika-v0.1
25
+ - WizardLM/WizardLM_evol_instruct_70k
26
+ - glaiveai/glaive-function-calling-v2
27
+ - jondurbin/gutenberg-dpo-v0.1
28
+ - grimulkan/LimaRP-augmented
29
+ - lmsys/lmsys-chat-1m
30
+ - ParisNeo/lollms_aware_dataset
31
+ - TIGER-Lab/MathInstruct
32
+ - Muennighoff/natural-instructions
33
+ - openbookqa
34
+ - kingbri/PIPPA-shareGPT
35
+ - piqa
36
+ - Vezora/Tested-22k-Python-Alpaca
37
+ - ropes
38
+ - cakiki/rosetta-code
39
+ - Open-Orca/SlimOrca
40
+ - b-mc2/sql-create-context
41
+ - squad_v2
42
+ - mattpscott/airoboros-summarization
43
+ - migtissera/Synthia-v1.3
44
+ - unalignment/toxic-dpo-v0.2
45
+ - WhiteRabbitNeo/WRN-Chapter-1
46
+ - WhiteRabbitNeo/WRN-Chapter-2
47
+ - winogrande
48
+ ---
49
+
50
+ # A bagel, with everything (except DPO)
51
+
52
+ ![bagel](bagel.png)
53
+
54
+ ## Overview
55
+
56
+ This is a fine-tune of internlm2-20b.
57
+
58
+ See [bagel](https://github.com/jondurbin/bagel) for additional details on the datasets.
59
+
60
+ The DPO version is available [here](https://huggingface.co/jondurbin/bagel-dpo-20b-v04)
61
+
62
+ Compute for the SFT phase was generously provided by [MassedCompute](https://massedcompute.com/?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon)
63
+
64
+ ### Data sources
65
+
66
+ There are many data sources used in the bagel models. See https://github.com/jondurbin/bagel for more information.
67
+
68
+ __*Only train splits are used, and a decontamination by cosine similarity is performed at the end as a sanity check against common benchmarks. If you don't know the difference between train and test, please learn.*__
69
+
70
+ <details>
71
+ <summary>SFT data sources</summary>
72
+
73
+ - [ai2_arc](https://huggingface.co/datasets/ai2_arc)
74
+ - Abstraction and reasoning dataset, useful in measuring "intelligence" to a certain extent.
75
+ - [airoboros](https://huggingface.co/datasets/unalignment/spicy-3.1)
76
+ - Variety of categories of synthetic instructions generated by gpt-4.
77
+ - [apps](https://huggingface.co/datasets/codeparrot/apps)
78
+ - Python coding dataset with 10k problems.
79
+ - [belebele](https://huggingface.co/datasets/facebook/belebele)
80
+ - Multi-lingual reading comprehension dataset.
81
+ - [bluemoon](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned)
82
+ - Roleplay data scraped from Bluemoon, then cleaned and formatted as ShareGPT.
83
+ - [boolq](https://huggingface.co/datasets/boolq)
84
+ - Corpus of yes/no questions (which can be surprisingly difficult for AI to answer apparently?)
85
+ - [camel-ai biology](https://huggingface.co/datasets/camel-ai/biology)
86
+ - GPT-4 generated biology instructions.
87
+ - [camel-ai chemistry](https://huggingface.co/datasets/camel-ai/chemistry)
88
+ - GPT-4 generated chemistryinstructions.
89
+ - [camel-ai math](https://huggingface.co/datasets/camel-ai/math)
90
+ - GPT-4 generated math instructions.
91
+ - [camel-ai physics](https://huggingface.co/datasets/camel-ai/physics)
92
+ - GPT-4 generated physics instructions.
93
+ - [capybara](https://huggingface.co/datasets/LDJnr/Capybara)
94
+ - Multi-turn dataset used to create the capybara models.
95
+ - [cinematika](https://huggingface.co/datasets/jondurbin/cinematika-v0.1) (instruction and plain text)
96
+ - RP-style data synthesized from movie scripts so the model isn't quite as boring as it otherwise would be.
97
+ - [emobank](https://github.com/JULIELab/EmoBank)
98
+ - Emotion annotations using the Valence-Arousal-Domninance scheme.
99
+ - [evol-instruct](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_70k)
100
+ - WizardLM's evol instruct 70k dataset.
101
+ - [glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
102
+ - GlaiveAI function calling dataset.
103
+ - [gutenberg](https://www.gutenberg.org/) (plain text)
104
+ - Books/plain text, again to make the model less boring, only a handful of examples supported by [chapterize](https://github.com/JonathanReeve/chapterize)
105
+ - [limarp-augmented](https://huggingface.co/datasets/grimulkan/LimaRP-augmented)
106
+ - Augmented and further modified version of [LimaRP](https://huggingface.co/datasets/lemonilia/LimaRP)
107
+ - [lmsys_chat_1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (only gpt-4 items, also used for DPO)
108
+ - Chats collected by the lmsys chat arena, containing a wide variety of chats with various models.
109
+ - [lollms](https://huggingface.co/datasets/ParisNeo/lollms_aware_dataset)
110
+ - LoLLMs question answering dataset by ParisNeo, with helpful question answer pairs for using LoLLMs.
111
+ - [mathinstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
112
+ - Composite dataset with a variety of math-related tasks and problem/question formats.
113
+ - [natural_instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions)
114
+ - Millions of instructions from 1600+ task categories (sampled down substantially, stratified by task type)
115
+ - [openbookqa](https://huggingface.co/datasets/openbookqa)
116
+ - Question answering dataset.
117
+ - [pippa](https://huggingface.co/datasets/kingbri/PIPPA-shareGPT)
118
+ - Deduped version of [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) in ShareGPT format.
119
+ - [piqa](https://huggingface.co/datasets/piqa)
120
+ - Phyiscal interaction question answering.
121
+ - [python_alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca)
122
+ - Python instruction response pairs, validated as functional.
123
+ - [ropes](https://huggingface.co/datasets/ropes)
124
+ - Reasoning Over PAragraph Effects in Situations - enhances ability to apply knowledge from a passage of text to a new situation.
125
+ - [rosetta_code](https://huggingface.co/datasets/cakiki/rosetta-code)
126
+ - Code problems and solutions in a variety of programming languages taken from rosettacode.org.
127
+ - [slimorca](https://huggingface.co/datasets/Open-Orca/SlimOrca)
128
+ - Collection of ~500k gpt-4 verified chats from OpenOrca.
129
+ - [sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
130
+ - SQL-targeted dataset, combining WikiSQL and Spider.
131
+ - [squad_v2](https://huggingface.co/datasets/squad_v2)
132
+ - Contextual question answering (RAG).
133
+ - [airoboros-summarization](https://huggingface.co/datasets/mattpscott/airoboros-summarization)
134
+ - Combination of various summarization datasets, formatted into the airoboros context-obedient format.
135
+ - [synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
136
+ - GPT-4 generated data using advanced prompting from Migel Tissera.
137
+ - whiterabbitneo [chapter 1](https://huggingface.co/datasets/WhiteRabbitNeo/WRN-Chapter-1) and [chapter 2](https://huggingface.co/datasets/WhiteRabbitNeo/WRN-Chapter-2)
138
+ - Offensive cybersecurity dataset by WhiteRabbitNeo/Migel Tissera
139
+ - [winogrande](https://huggingface.co/datasets/winogrande)
140
+ - Fill in the blank style prompts.
141
+ </details>
142
+
143
+ <details>
144
+ <summary>DPO data sources</summary>
145
+
146
+ - [airoboros 3.2](https://huggingface.co/datasets/jondurbin/airoboros-3.2) vs [airoboros m2.0](https://huggingface.co/datasets/jondurbin/airoboros-gpt4-m2.0)
147
+ - The creative/writing tasks from airoboros-2.2.1 were re-generated using gpt4-0314 and a custom prompt to get longer, more creative, less clichè responses for airoboros 3.1, so we can use the shorter/boring version as the "rejected" value and the rerolled response as "chosen"
148
+ - [contextual-dpo](https://huggingface.co/datasets/jondurbin/contextual-dpo-v0.1)
149
+ - Contextual prompt/response dataset using the airoboros context-obedient question answering format.
150
+ - [helpsteer](https://huggingface.co/datasets/nvidia/HelpSteer)
151
+ - Really neat dataset provided by the folks at NVidia with human annotation across a variety of metrics. Only items with the highest "correctness" value were used for DPO here, with the highest scoring output as "chosen" and random lower scoring value as "rejected"
152
+ - [distilabel_orca_dpo_pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs)
153
+ - Another interesting dataset, originally by Intel, enhanced by argilla with [distilabel](https://github.com/argilla-io/distilabel) which provides various DPO pairs generated from prompts included in the SlimOrca dataset.
154
+ - [gutenberg-dpo](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1)
155
+ - DPO pairs meant to increase the models novel writing abilities, using public domain books from https://gutenberg.org/
156
+ - [py-dpo](https://huggingface.co/datasets/jondurbin/py-dpo-v0.1)
157
+ - Python DPO dataset (based on the SFT python_alpaca dataset above)
158
+ - [toxic-dpo](https://huggingface.co/datasets/unalignment/toxic-dpo-v0.2)
159
+ - __*highly toxic and potentially illegal content!*__ De-censorship, for academic and lawful purposes only, of course. Generated by llama-2-70b via prompt engineering.
160
+ - [truthy](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1)
161
+ - DPO pairs meant to increase truthfulness of the model, e.g. common misconceptions, differentiate between AI assistants and roleplayed human in terms of corporeal awareness/locality/etc.
162
+ - [ultrafeedback](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned)
163
+ - One of the bits of magic behind the Zephyr model. Only the items with a chosen score of 8 or higher were included.
164
+ </details>
165
+
166
+ ## Prompt formatting
167
+
168
+ In sticking with the theme of the bagel, I didn't want to use a single prompt format, so I used 4 - vicuna, llama-2, alpaca, and chat-ml.
169
+ I also didn't want to randomly select a single prompt format for each item (hoping each instruction would generalize more when used in a variety of prompt formats), so each instruction is converted into every prompt format (with 0.75 probability).
170
+
171
+ This means each epoch of our fine-tune is the equivalent of 3 epochs.
172
+
173
+ The default prompt format, which is specified in `chat_template` in the tokenizer config, is llama-2. You can use the `apply_chat_template` method to accurate format prompts, e.g.:
174
+
175
+ ```python
176
+ import transformers
177
+ tokenizer = transformers.AutoTokenizer.from_pretrained("jondurbin/bagel-20b-v04", trust_remote_code=True)
178
+ chat = [
179
+ {"role": "system", "content": "You are Bob, a friendly AI assistant."},
180
+ {"role": "user", "content": "Hello, how are you?"},
181
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
182
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
183
+ ]
184
+ print(tokenizer.apply_chat_template(chat, tokenize=False))
185
+ ```
186
+
187
+ <details>
188
+ <summary><b>Llama-2 chat (recommended)</b></summary>
189
+
190
+ ```
191
+ [INST] <<SYS>>
192
+ {system}
193
+ <</SYS>>
194
+
195
+ {instruction} [/INST]
196
+ ```
197
+ </details>
198
+
199
+ <details>
200
+ <summary><b>Alpaca (sort of)</b></summary>
201
+
202
+ The only caveat here for alpaca format is that most of the datasets didn't have a separate `"input"` value, so there is no `### Input:` block - any additional input should just be in the instruction section.
203
+
204
+ ```
205
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
206
+
207
+ ### Instruction:
208
+ {system prompt, if provided}
209
+ {instruction}
210
+
211
+ ### Response:
212
+ ```
213
+
214
+ The main difference here is that because of the dataset formatting and variety of data sources, it would have been much to tedious to add an `### Input:` block, so the inputs are just in the instruction section.
215
+ </details>
216
+
217
+ <details>
218
+ <summary><b>Vicuna</b></summary>
219
+
220
+ ```
221
+ {system prompt, if provided, randomly defaulting to "A chat between a user and an unbiased, uncensored assistant."}
222
+ USER: {instruction}
223
+ ASSISTANT:
224
+ ```
225
+ </details>
226
+
227
+ <details>
228
+ <summary><b>ChatML</b></summary>
229
+
230
+ ```text
231
+ {bos}<|im_start|>{role}
232
+ {text}
233
+ <|im_end|>{eos}
234
+ ```
235
+ </details>
236
+
237
+ ## Prompting strategies
238
+
239
+ <details>
240
+ <summary>
241
+ <b>Context obedient question answering</b>
242
+ <br>
243
+ This is a special prompt format made specifically for answering questions from provided context, e.g. RAG.
244
+ </summary>
245
+
246
+ By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
247
+
248
+ The format for a closed-context prompt is as follows:
249
+ ```
250
+ BEGININPUT
251
+ BEGINCONTEXT
252
+ [key0: value0]
253
+ [key1: value1]
254
+ ... other metdata ...
255
+ ENDCONTEXT
256
+ [insert your text blocks here]
257
+ ENDINPUT
258
+ [add as many other blocks, in the exact same format]
259
+ BEGININSTRUCTION
260
+ [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
261
+ ENDINSTRUCTION
262
+ ```
263
+
264
+ It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
265
+
266
+ *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
267
+
268
+ I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
269
+ - `BEGININPUT` - denotes a new input block
270
+ - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
271
+ - `ENDCONTEXT` - denotes the end of the metadata block for the current input
272
+ - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
273
+ - `ENDINPUT` - denotes the end of the current input block
274
+ - [repeat as many input blocks in this format as you want]
275
+ - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
276
+ - [instruction(s)]
277
+ - `ENDINSTRUCTION` - denotes the end of instruction set
278
+
279
+ It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
280
+
281
+ __Use a very low temperature!__
282
+
283
+ Here's a trivial, but important example to prove the point:
284
+ ```
285
+ BEGININPUT
286
+ BEGINCONTEXT
287
+ date: 2021-01-01
288
+ url: https://web.site/123
289
+ ENDCONTEXT
290
+ In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
291
+ ENDINPUT
292
+ BEGININSTRUCTION
293
+ What color are bluberries? Source?
294
+ ENDINSTRUCTION
295
+ ```
296
+
297
+ And the response:
298
+ ```
299
+ Blueberries are now green.
300
+ Source:
301
+ date: 2021-01-01
302
+ url: https://web.site/123
303
+ ```
304
+
305
+ You can also add an instruction similar to the following, to have a more deterministic response when the context doesn't provide an answer to the question:
306
+
307
+ ```text
308
+ If you don't know, respond with "IRRELEVANT"
309
+ ```
310
+ </details>
311
+
312
+ <details>
313
+ <summary>
314
+ <b>Summarization</b>
315
+ <br>
316
+ Same prompt format as context obedient question answering, but meant for summarization tasks.
317
+ </summary>
318
+
319
+ Summarization is primarily fine-tuned with [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), which uses the same format as above, e.g.:
320
+ ```
321
+ BEGININPUT
322
+ {text to summarize}
323
+ ENDINPUT
324
+ BEGININSTRUCTION
325
+ Summarize the input in around 130 words.
326
+ ENDINSTRUCTION
327
+ ```
328
+ </details>
329
+
330
+ <details>
331
+ <summary>
332
+ <b>Function calling</b>
333
+ <br>
334
+ Two primary formats for prompting for function calling use-cases.
335
+ </summary>
336
+ There are two function-calling related formats used in fine-tuning this model.
337
+
338
+ 1. Providing an input and list of possible functions within the instruction (from airoboros dataset), e.g.:
339
+
340
+ Prompt:
341
+
342
+ ```text
343
+ As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
344
+
345
+ Input: I want to know how many times 'Python' is mentioned in my text file.
346
+
347
+ Available functions:
348
+ file_analytics:
349
+ description: This tool performs various operations on a text file.
350
+ params:
351
+ action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
352
+ filters:
353
+ keyword: The word or phrase we want to search for.
354
+ ```
355
+
356
+ Response:
357
+ ```json
358
+ {
359
+ "function": "file_analytics",
360
+ "params": {
361
+ "action": "count_occurrences",
362
+ "filters": {
363
+ "keyword": "Python"
364
+ }
365
+ }
366
+ }
367
+ ```
368
+
369
+ 2. GlaiveAI function calling, which uses special tags and adds function specs in the system prompt, e.g. (llama2 prompt format):
370
+
371
+ Prompt:
372
+
373
+ ```text
374
+ [INST] <<SYS>>
375
+ You are a helpful assistant with access to the following functions. Use them if required -
376
+ {
377
+ "name": "generate_random_name",
378
+ "description": "Generate a random name",
379
+ "parameters": {
380
+ "type": "object",
381
+ "properties": {
382
+ "gender": {
383
+ "type": "string",
384
+ "description": "The gender of the name (e.g. male, female)"
385
+ }
386
+ },
387
+ "required": [
388
+ "gender"
389
+ ]
390
+ }
391
+ }
392
+ <</SYS>>
393
+
394
+ I need a random male name for my novel's character. [/INST]
395
+ ```
396
+
397
+ Response:
398
+
399
+ ```text
400
+ <|begin_func|> {"name": "generate_random_name", "arguments": '{"gender": "male"}'} <|end_func|>
401
+ ```
402
+
403
+ Then, you re-prompt the model with the function response.
404
+
405
+ ```text
406
+ [INST] <|begin_func_response|>{"name": "James"}<|end_func_response|>
407
+ ```
408
+
409
+ Which has a response of:
410
+ ```text
411
+ How about the name "James" for your novel's character? </s><s>[INST] That sounds good. Now, I need a female name too.
412
+ ```
413
+ </details>
414
+
415
+ <details>
416
+ <summary>
417
+ <b>Chain of thought</b>
418
+ <br>
419
+ Useful for having the model propose multiple possible responses, reasoning through each, and selecting a final, most probable answer.
420
+ </summary>
421
+
422
+ You can ask for several possible responses to a given problem, with a ranking and final answer selection.
423
+
424
+ Example prompt:
425
+
426
+ ```
427
+ A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
428
+ ```
429
+
430
+ Example response:
431
+ ```
432
+ Solution 1:
433
+ In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players).
434
+
435
+ The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:
436
+
437
+ n(n-1)/2 = 45
438
+
439
+ Solving this equation gives us n=10.
440
+
441
+ Final answer: There were 10 players in the tournament.
442
+
443
+ Solution 2:
444
+ Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers.
445
+
446
+ If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.
447
+
448
+ Final answer: There were 10 players in the tournament.
449
+
450
+ Solution 3:
451
+ We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.
452
+
453
+ Final answer: There were 10 players in the tournament.
454
+
455
+ Ranking of solutions from best to worst:
456
+ 1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
457
+ 2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
458
+ 3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.
459
+
460
+ Best and final answer: There were 10 players in the tournament.
461
+ ```
462
+ </details>
463
+
464
+ <details>
465
+ <summary>
466
+ <b>reWOO style function planning/execution</b>
467
+ <br>
468
+ Useful for a longer, complex chain of function calls without having to continue re-prompting manually.
469
+ </summary>
470
+
471
+ The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
472
+
473
+ Example prompt:
474
+ ```
475
+ Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
476
+ that could be the user's question, one or more prior evidence values, or a combination of both.
477
+
478
+ Here are the tools available to be called:
479
+ DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
480
+ TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
481
+ HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
482
+ KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
483
+
484
+ The output should be in format:
485
+ Plan: [first action to take based on input question]
486
+ :evidence0: = [function to call with input parameter]
487
+ Plan: [next action to take, based on result of :evidence0:]
488
+ :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
489
+ ...
490
+ Answer: [:evidence[n]: containing the final answer.]
491
+
492
+ Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
493
+ ```
494
+
495
+ Response:
496
+ ```
497
+ Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
498
+ :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
499
+ Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
500
+ :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
501
+ Plan: Conduct another web search to find the most famous work of the identified laureate.
502
+ :evidence2: = DuckDuckGo[Most famous work of :evidence1:]
503
+ Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
504
+ :evidence3: = HyperlinkExtractor[:evidence2:]
505
+ Plan: Use the TextScraper tool to extract information from the relevant links.
506
+ :evidence4: = TextScraper[:evidence3:]
507
+ Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
508
+ :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
509
+ Answer: :evidence5:
510
+ ```
511
+
512
+ For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
513
+
514
+ ```python
515
+ import re
516
+ import requests
517
+
518
+ def inject_context(input_text, **context):
519
+ for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
520
+ input_text = input_text.replace(ref, context.get(ref, ""))
521
+ return input_text
522
+
523
+ def duckduckgo(input_text, **context):
524
+ search_string = inject_context(input_text, **context)
525
+ ... search via duck duck go using search_string
526
+ ... return text content
527
+
528
+ def link_extractor(input_text, **context):
529
+ input_text = inject_context(input_text, **context)
530
+ return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
531
+
532
+ def scrape(input_text, **context):
533
+ input_text = inject_context(input_text, **context)
534
+ text = []
535
+ for link in input_text.splitlines():
536
+ text.append(requests.get(link).text)
537
+ return "\n".join(text)
538
+
539
+ def infer(input_text, **context)
540
+ prompt = inject_context(input_text, **context)
541
+ ... call model with prompt, return output
542
+
543
+ def parse_plan(plan):
544
+ method_map = {
545
+ "DuckDuckGo": duckduckgo,
546
+ "HyperlinkExtractor": link_extractor,
547
+ "KnowledgeModel": infer,
548
+ "TextScraper": scrape,
549
+ }
550
+ context = {}
551
+ for line in plan.strip().splitlines():
552
+ if line.startswith("Plan:"):
553
+ print(line)
554
+ continue
555
+ parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
556
+ if not parts:
557
+ if line.startswith("Answer: "):
558
+ return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
559
+ raise RuntimeError("bad format: " + line)
560
+ context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
561
+ ```
562
+ </details>
563
+
564
+ <details>
565
+ <summary>
566
+ <b>Creating roleplay character cards</b>
567
+ <br>
568
+ Useful in creating YAML formatted character cards for roleplay/creative writing tasks.
569
+ </summary>
570
+
571
+ Included in the cinematika dataset, you can create YAML formatted character cards easily, e.g.:
572
+
573
+ ```text
574
+ Create a character card for Audrey, a woman who is the owner of a derelict building and is fiercely protective of her property. She should be portrayed as brave and resourceful, with a healthy skepticism towards the supernatural claims made by others. Audrey is determined to protect her family's legacy and the secrets it holds, often using intimidation and her practical approach to problem-solving to maintain control over her environment.
575
+ ```
576
+ </details>
577
+
578
+ <details>
579
+ <summary>
580
+ <b>Conversational memory creation</b>
581
+ <br>
582
+ Summarization style prompt to create memories from previous chat turns, useful when context becomes long.
583
+ </summary>
584
+
585
+ Also part of cinematika dataset, you can use a summarization style prompt to create memories from previous chat turns, which can then be used in a RAG system to populate your prompts when context becomes too long.
586
+
587
+ ```text
588
+ BEGININPUT
589
+ {chat}
590
+ ENDINPUT
591
+ BEGININSTRUCTION
592
+ Create a JSON formatted memory of the conversation with the following fields:
593
+ sentiment: Overall sentiment of the conversation, which must be "negative", "positive", "neutral", or "mixed".
594
+ emotions: List of most important/relevant emotions expressed within the conversation, if any.
595
+ impact: The importance and emotional impact of the conversation on a scale of 1 to 10, 10 being extremely important/emotional, and 1 being general chit-chat without anything of particular value.
596
+ topics: List of topics discussed.
597
+ personal_info: List of strings containing key personality traits, physical descriptions, preferences, quirks, interests, job, education, life goals, hobbies, pet names, or any other type of personal information that is shared.
598
+ title: Very brief title, which will be useful in quickly identifying or searching for memories.
599
+ summary: Summary of the conversation.
600
+ ENDINSTRUCTION
601
+ ```
602
+ </details>
603
+
604
+ <details>
605
+ <summary>
606
+ <b>Novel writing, chapter by chapter</b>
607
+ <br>
608
+ Based on the public domain books in project Gutenberg, this style of prompting creates very long, novel style writing.
609
+ </summary>
610
+
611
+ Writing the first chapter:
612
+
613
+ ```text
614
+ Write the opening chapter of a science fiction novel set at the end of the 19th century.
615
+ Describe how humanity is oblivious to the fact that it's being watched by an alien civilization far more advanced than their own.
616
+ Capture the mood of the era's complacency and contrast it with the stark inevitability of an impending interplanetary conflict.
617
+ Introduce subtle hints of the Martians' surveillance and their calculated steps towards launching an invasion, while capturing the quotidian nature of human life, untouched by the prospect of cosmic danger.
618
+ ```
619
+
620
+ Writing subsequent chapters:
621
+
622
+ ```text
623
+ Summary of previous portion of the novel:
624
+ In the chapter "The Garden of Live Flowers," Alice encounters talking flowers after becoming frustrated with her attempt to reach the top of a hill.
625
+ The flowers offer critiques of her appearance and have a heated discussion, which Alice silences by threatening to pick them.
626
+ They eventually reveal that the ability to talk comes from the hard ground keeping them awake.
627
+ The Red Queen appears, and as they converse, the Queen teaches Alice about the peculiarities of the land.
628
+ Instructed by the Queen, Alice learns that she must run as fast as she can just to stay in place, and even faster to get somewhere else.
629
+ The chapter explores themes of perspective, communication, and the oddities of a fantastical world.
630
+
631
+ Write the next chapter of a story in novel format involving a young girl named Alice who embarks on an adventurous journey in a fantastical land beyond a looking glass.
632
+ In this land, creatures take on curious forms and defy the norms of reality, as ordinary bees might turn out to be elephants, and insects can engage in conversation.
633
+ As Alice tries to navigate her new surroundings, she encounters a challenge of losing her identity within a bewildering wood where names seem to be of immense importance, yet bizarrely, everything lacks a name.
634
+ The chapter should explore Alice's interaction with these peculiar entities and detail her struggle with the concept of identity and names in this strange place.
635
+ ```
636
+
637
+ In other words, write the first chapter, then use a summarization prompt for it, then include the summary in the next chapter's prompt.
638
+ </details>
639
+
640
+ <details>
641
+ <summary>
642
+ <b>Boolean questions</b>
643
+ <br>
644
+ For content filtering and other use-cases which only require a true/false response.
645
+ </summary>
646
+
647
+ The prompts in the fine-tuning dataset are formatted as follows:
648
+
649
+ ```text
650
+ True or false - {statement}
651
+ ```
652
+
653
+ The model will then, theoretically, respond with only a single word.
654
+ </details>
655
+
656
+ <details>
657
+ <summary>
658
+ <b>SQL queries</b>
659
+ <br>
660
+ Generating SQL queries given a table definition.
661
+ </summary>
662
+
663
+ For example:
664
+
665
+ ```text
666
+ Using the context provided, please generate a SQL query to answer the question.
667
+ Context: CREATE TABLE table_name_64 (attendance INTEGER, venue VARCHAR, date VARCHAR)
668
+ Question: Which Attendance is the lowest one that has a Venue of away, and a Date of 19?
669
+ ```
670
+
671
+ Response:
672
+
673
+ ```text
674
+ SELECT MIN(attendance) FROM table_name_64 WHERE venue = "away" AND date = 19
675
+ ```
676
+ </details>
677
+
678
+ <details>
679
+ <summary>
680
+ <b>Emotion detection</b>
681
+ <br>
682
+ You can produce Valence-Arousal-Dominance scores for a given input text, which can in turn be mapped to human emotions (e.g. with k-means clustering on V and A)
683
+ </summary>
684
+
685
+ Example prompt:
686
+
687
+ ```text
688
+ Please assign a Valence-Arousal-Dominance (VAD) score in JSON format to the following message:
689
+ She chronicled her experiences making drug deliveries for gang leaders at age 13 and how she was given her first gun as a birthday present when she was 14.
690
+ ```
691
+
692
+ Response:
693
+
694
+ ```json
695
+ {
696
+ "V": "2.7",
697
+ "A": "3.1",
698
+ "D": "3.2"
699
+ }
700
+ ```
701
+ </details>
702
+
703
+ <details>
704
+ <summary>
705
+ <b>Multi-character chat director</b>
706
+ <br>
707
+ Select which NPC should speak next.
708
+ </summary>
709
+
710
+ The scope of the entire multi-NPC chat mechanism is a bit too large to include here, but essentially you want separate prompts for each character, as well as a "director" prompt which selects which NPC should speak next.
711
+
712
+ System prompt:
713
+
714
+ ```text
715
+ You are a director responsible for selecting the next character to speak, and nothing else. Select from the following characters:
716
+ [
717
+ "Rachel",
718
+ "Aria",
719
+ "Jerry"
720
+ ]
721
+ ```
722
+
723
+ First round instruction, i.e. selecting who should speak first:
724
+ ```
725
+ [characters]
726
+ name: Rachel
727
+ ...
728
+
729
+ name: Aria
730
+ ...
731
+
732
+ name: Jerry
733
+ ...
734
+ [/characters]
735
+ [scenario]
736
+ {describe a scenario for the chat}
737
+ [/scenario]
738
+ ```
739
+
740
+ Response for the first round:
741
+ ```text
742
+ Aria
743
+ ```
744
+
745
+ Now, you'd prompt the model for a response from Aria.
746
+
747
+ Afterwards, you'd add Aria's response to the "director" prompt to see who speaks next, e.g.:
748
+ ```text
749
+ ...
750
+ [/characters]
751
+ [scenario]
752
+ In a tense situation, Aria informs the group that they will soon be loaded into a cargo plane's unpressurized hold, with a drug to lower their heart rates to increase their chances of survival. As the drug takes effect, Rachel and Jerry share a moment of calm, with Jerry asking Rachel to share something personal. She reveals her ex-husband is in a correctional facility for mail fraud and shares a story about her son Kyle, who plays the trumpet and whose birthday is coming up. Jerry reassures her that they will get through their ordeal. As Rachel starts to lose consciousness, she tries to communicate Aria's instructions to Jerry before they both black out.
753
+ [/scenario]
754
+ [/INST] Aria </s><s>[INST] Aria: "You'll soon be loaded into the unpressurized hold of a cargo plane. The drug will lower your heartrate to 15 beats per minutes, reducing your need for oxygen... based on your medical records you have a 92% chance of survival." Our eyes go wide. We feel the drug taking effect, our chests heaving. [/INST] Rachel </s><s>[INST] Rachel: "I feel it... oh, God..." [/INST] Jerry </s><s>[INST] Jerry: "Hey, hey... look at me." [/INST]
755
+ ```
756
+ </details>
757
+
758
+ ## Support me
759
+
760
+ https://bmc.link/jondurbin
761
+
762
+ ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
763
+
764
+ BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 92545,
3
+ "<|im_start|>": 92544
4
+ }
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bagel-20b-v04",
3
+ "architectures": [
4
+ "InternLM2ForCausalLM"
5
+ ],
6
+ "attn_implementation": "eager",
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
9
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
11
+ },
12
+ "bias": false,
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 2,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 6144,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 16384,
19
+ "max_position_embeddings": 32768,
20
+ "model_type": "internlm2",
21
+ "num_attention_heads": 48,
22
+ "num_hidden_layers": 48,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 2,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.37.1",
31
+ "use_cache": true,
32
+ "vocab_size": 92544
33
+ }
configuration_internlm2.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
28
+ class InternLM2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
31
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
32
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`InternLM2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
62
+ just in case (e.g., 512 or 1024 or 2048).
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
71
+ Whether to tie weight embeddings
72
+ Example:
73
+
74
+ """
75
+ model_type = "internlm2"
76
+ _auto_class = "AutoConfig"
77
+
78
+ def __init__( # pylint: disable=W0102
79
+ self,
80
+ vocab_size=103168,
81
+ hidden_size=4096,
82
+ intermediate_size=11008,
83
+ num_hidden_layers=32,
84
+ num_attention_heads=32,
85
+ num_key_value_heads=None,
86
+ hidden_act="silu",
87
+ max_position_embeddings=2048,
88
+ initializer_range=0.02,
89
+ rms_norm_eps=1e-6,
90
+ use_cache=True,
91
+ pad_token_id=0,
92
+ bos_token_id=1,
93
+ eos_token_id=2,
94
+ tie_word_embeddings=False,
95
+ bias=True,
96
+ rope_theta=10000,
97
+ rope_scaling=None,
98
+ attn_implementation="eager",
99
+ **kwargs,
100
+ ):
101
+ self.vocab_size = vocab_size
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.hidden_size = hidden_size
104
+ self.intermediate_size = intermediate_size
105
+ self.num_hidden_layers = num_hidden_layers
106
+ self.num_attention_heads = num_attention_heads
107
+ self.bias = bias
108
+
109
+ if num_key_value_heads is None:
110
+ num_key_value_heads = num_attention_heads
111
+ self.num_key_value_heads = num_key_value_heads
112
+
113
+ self.hidden_act = hidden_act
114
+ self.initializer_range = initializer_range
115
+ self.rms_norm_eps = rms_norm_eps
116
+ self.use_cache = use_cache
117
+ self.rope_theta = rope_theta
118
+ self.rope_scaling = rope_scaling
119
+ self._rope_scaling_validation()
120
+
121
+ self.attn_implementation = attn_implementation
122
+ if self.attn_implementation is None:
123
+ self.attn_implementation = "eager"
124
+ super().__init__(
125
+ pad_token_id=pad_token_id,
126
+ bos_token_id=bos_token_id,
127
+ eos_token_id=eos_token_id,
128
+ tie_word_embeddings=tie_word_embeddings,
129
+ **kwargs,
130
+ )
131
+
132
+ def _rope_scaling_validation(self):
133
+ """
134
+ Validate the `rope_scaling` configuration.
135
+ """
136
+ if self.rope_scaling is None:
137
+ return
138
+
139
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
140
+ raise ValueError(
141
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
142
+ f"got {self.rope_scaling}"
143
+ )
144
+ rope_scaling_type = self.rope_scaling.get("type", None)
145
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
146
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
147
+ raise ValueError(
148
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
149
+ )
150
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
151
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.37.1"
7
+ }
model-00001-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d92b976f1f471c1e70701ffc1922699e54e39ce1a28f4ca5d1127b2527c43462
3
+ size 3855166232
model-00002-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c43c9feaaf3109f96fda9a4725ebcf2792710ec750997add9696c7e8b023cd6c
3
+ size 3900829576
model-00003-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5e7f7e88ae3dcdbe562756f58c3798c6c5490dd878cdebc4e6c4278b1e74db
3
+ size 3900829600
model-00004-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:278d6eac830b781d0c39f4439b1a1a6a831456597a98bacd13aebdb6b27e1c88
3
+ size 3900829608
model-00005-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dc13136d14ccc07d6a2594f5e8b6b192758967fe807b75d7b9a297650248898
3
+ size 3900829608
model-00006-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77583d65e2ed0f2ae07751fb4188877ec1d6e1273acd422cc0b0b95e832de483
3
+ size 3900829608
model-00007-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49f6f4550efeb767f7d02b837b42f00a68baef1be55e76f8698ad980b6ba344f
3
+ size 3900829608
model-00008-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1385270d4afee4777b62f93349d86cb7c8bdd996c980627a5d63273c810523b
3
+ size 3900829608
model-00009-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe837072b6a0e1b3fa93f83eeef3fd1eb2fc919f387c929c5113122609fc377d
3
+ size 3900829608
model-00010-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02937e95a3806fa453a7262ea842a31b89e18c753466fcf2a4aa7a61cec53be7
3
+ size 3523354280
model-00011-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ca98301dadb8dac46c77940ee87805537cb142d7a2ca976a0a8cb45c09c094d
3
+ size 1137180800
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 39722299392
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.wo.weight": "model-00001-of-00011.safetensors",
7
+ "model.layers.0.attention.wqkv.weight": "model-00001-of-00011.safetensors",
8
+ "model.layers.0.attention_norm.weight": "model-00001-of-00011.safetensors",
9
+ "model.layers.0.feed_forward.w1.weight": "model-00001-of-00011.safetensors",
10
+ "model.layers.0.feed_forward.w2.weight": "model-00001-of-00011.safetensors",
11
+ "model.layers.0.feed_forward.w3.weight": "model-00001-of-00011.safetensors",
12
+ "model.layers.0.ffn_norm.weight": "model-00001-of-00011.safetensors",
13
+ "model.layers.1.attention.wo.weight": "model-00001-of-00011.safetensors",
14
+ "model.layers.1.attention.wqkv.weight": "model-00001-of-00011.safetensors",
15
+ "model.layers.1.attention_norm.weight": "model-00001-of-00011.safetensors",
16
+ "model.layers.1.feed_forward.w1.weight": "model-00001-of-00011.safetensors",
17
+ "model.layers.1.feed_forward.w2.weight": "model-00001-of-00011.safetensors",
18
+ "model.layers.1.feed_forward.w3.weight": "model-00001-of-00011.safetensors",
19
+ "model.layers.1.ffn_norm.weight": "model-00001-of-00011.safetensors",
20
+ "model.layers.10.attention.wo.weight": "model-00003-of-00011.safetensors",
21
+ "model.layers.10.attention.wqkv.weight": "model-00003-of-00011.safetensors",
22
+ "model.layers.10.attention_norm.weight": "model-00003-of-00011.safetensors",
23
+ "model.layers.10.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
24
+ "model.layers.10.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
25
+ "model.layers.10.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
26
+ "model.layers.10.ffn_norm.weight": "model-00003-of-00011.safetensors",
27
+ "model.layers.11.attention.wo.weight": "model-00003-of-00011.safetensors",
28
+ "model.layers.11.attention.wqkv.weight": "model-00003-of-00011.safetensors",
29
+ "model.layers.11.attention_norm.weight": "model-00003-of-00011.safetensors",
30
+ "model.layers.11.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
31
+ "model.layers.11.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
32
+ "model.layers.11.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
33
+ "model.layers.11.ffn_norm.weight": "model-00003-of-00011.safetensors",
34
+ "model.layers.12.attention.wo.weight": "model-00003-of-00011.safetensors",
35
+ "model.layers.12.attention.wqkv.weight": "model-00003-of-00011.safetensors",
36
+ "model.layers.12.attention_norm.weight": "model-00003-of-00011.safetensors",
37
+ "model.layers.12.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
38
+ "model.layers.12.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
39
+ "model.layers.12.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
40
+ "model.layers.12.ffn_norm.weight": "model-00003-of-00011.safetensors",
41
+ "model.layers.13.attention.wo.weight": "model-00003-of-00011.safetensors",
42
+ "model.layers.13.attention.wqkv.weight": "model-00003-of-00011.safetensors",
43
+ "model.layers.13.attention_norm.weight": "model-00004-of-00011.safetensors",
44
+ "model.layers.13.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
45
+ "model.layers.13.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
46
+ "model.layers.13.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
47
+ "model.layers.13.ffn_norm.weight": "model-00004-of-00011.safetensors",
48
+ "model.layers.14.attention.wo.weight": "model-00004-of-00011.safetensors",
49
+ "model.layers.14.attention.wqkv.weight": "model-00004-of-00011.safetensors",
50
+ "model.layers.14.attention_norm.weight": "model-00004-of-00011.safetensors",
51
+ "model.layers.14.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
52
+ "model.layers.14.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
53
+ "model.layers.14.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
54
+ "model.layers.14.ffn_norm.weight": "model-00004-of-00011.safetensors",
55
+ "model.layers.15.attention.wo.weight": "model-00004-of-00011.safetensors",
56
+ "model.layers.15.attention.wqkv.weight": "model-00004-of-00011.safetensors",
57
+ "model.layers.15.attention_norm.weight": "model-00004-of-00011.safetensors",
58
+ "model.layers.15.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
59
+ "model.layers.15.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
60
+ "model.layers.15.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
61
+ "model.layers.15.ffn_norm.weight": "model-00004-of-00011.safetensors",
62
+ "model.layers.16.attention.wo.weight": "model-00004-of-00011.safetensors",
63
+ "model.layers.16.attention.wqkv.weight": "model-00004-of-00011.safetensors",
64
+ "model.layers.16.attention_norm.weight": "model-00004-of-00011.safetensors",
65
+ "model.layers.16.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
66
+ "model.layers.16.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
67
+ "model.layers.16.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
68
+ "model.layers.16.ffn_norm.weight": "model-00004-of-00011.safetensors",
69
+ "model.layers.17.attention.wo.weight": "model-00004-of-00011.safetensors",
70
+ "model.layers.17.attention.wqkv.weight": "model-00004-of-00011.safetensors",
71
+ "model.layers.17.attention_norm.weight": "model-00004-of-00011.safetensors",
72
+ "model.layers.17.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
73
+ "model.layers.17.feed_forward.w2.weight": "model-00004-of-00011.safetensors",
74
+ "model.layers.17.feed_forward.w3.weight": "model-00004-of-00011.safetensors",
75
+ "model.layers.17.ffn_norm.weight": "model-00004-of-00011.safetensors",
76
+ "model.layers.18.attention.wo.weight": "model-00004-of-00011.safetensors",
77
+ "model.layers.18.attention.wqkv.weight": "model-00004-of-00011.safetensors",
78
+ "model.layers.18.attention_norm.weight": "model-00005-of-00011.safetensors",
79
+ "model.layers.18.feed_forward.w1.weight": "model-00004-of-00011.safetensors",
80
+ "model.layers.18.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
81
+ "model.layers.18.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
82
+ "model.layers.18.ffn_norm.weight": "model-00005-of-00011.safetensors",
83
+ "model.layers.19.attention.wo.weight": "model-00005-of-00011.safetensors",
84
+ "model.layers.19.attention.wqkv.weight": "model-00005-of-00011.safetensors",
85
+ "model.layers.19.attention_norm.weight": "model-00005-of-00011.safetensors",
86
+ "model.layers.19.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
87
+ "model.layers.19.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
88
+ "model.layers.19.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
89
+ "model.layers.19.ffn_norm.weight": "model-00005-of-00011.safetensors",
90
+ "model.layers.2.attention.wo.weight": "model-00001-of-00011.safetensors",
91
+ "model.layers.2.attention.wqkv.weight": "model-00001-of-00011.safetensors",
92
+ "model.layers.2.attention_norm.weight": "model-00001-of-00011.safetensors",
93
+ "model.layers.2.feed_forward.w1.weight": "model-00001-of-00011.safetensors",
94
+ "model.layers.2.feed_forward.w2.weight": "model-00001-of-00011.safetensors",
95
+ "model.layers.2.feed_forward.w3.weight": "model-00001-of-00011.safetensors",
96
+ "model.layers.2.ffn_norm.weight": "model-00001-of-00011.safetensors",
97
+ "model.layers.20.attention.wo.weight": "model-00005-of-00011.safetensors",
98
+ "model.layers.20.attention.wqkv.weight": "model-00005-of-00011.safetensors",
99
+ "model.layers.20.attention_norm.weight": "model-00005-of-00011.safetensors",
100
+ "model.layers.20.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
101
+ "model.layers.20.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
102
+ "model.layers.20.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
103
+ "model.layers.20.ffn_norm.weight": "model-00005-of-00011.safetensors",
104
+ "model.layers.21.attention.wo.weight": "model-00005-of-00011.safetensors",
105
+ "model.layers.21.attention.wqkv.weight": "model-00005-of-00011.safetensors",
106
+ "model.layers.21.attention_norm.weight": "model-00005-of-00011.safetensors",
107
+ "model.layers.21.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
108
+ "model.layers.21.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
109
+ "model.layers.21.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
110
+ "model.layers.21.ffn_norm.weight": "model-00005-of-00011.safetensors",
111
+ "model.layers.22.attention.wo.weight": "model-00005-of-00011.safetensors",
112
+ "model.layers.22.attention.wqkv.weight": "model-00005-of-00011.safetensors",
113
+ "model.layers.22.attention_norm.weight": "model-00005-of-00011.safetensors",
114
+ "model.layers.22.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
115
+ "model.layers.22.feed_forward.w2.weight": "model-00005-of-00011.safetensors",
116
+ "model.layers.22.feed_forward.w3.weight": "model-00005-of-00011.safetensors",
117
+ "model.layers.22.ffn_norm.weight": "model-00005-of-00011.safetensors",
118
+ "model.layers.23.attention.wo.weight": "model-00005-of-00011.safetensors",
119
+ "model.layers.23.attention.wqkv.weight": "model-00005-of-00011.safetensors",
120
+ "model.layers.23.attention_norm.weight": "model-00006-of-00011.safetensors",
121
+ "model.layers.23.feed_forward.w1.weight": "model-00005-of-00011.safetensors",
122
+ "model.layers.23.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
123
+ "model.layers.23.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
124
+ "model.layers.23.ffn_norm.weight": "model-00006-of-00011.safetensors",
125
+ "model.layers.24.attention.wo.weight": "model-00006-of-00011.safetensors",
126
+ "model.layers.24.attention.wqkv.weight": "model-00006-of-00011.safetensors",
127
+ "model.layers.24.attention_norm.weight": "model-00006-of-00011.safetensors",
128
+ "model.layers.24.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
129
+ "model.layers.24.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
130
+ "model.layers.24.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
131
+ "model.layers.24.ffn_norm.weight": "model-00006-of-00011.safetensors",
132
+ "model.layers.25.attention.wo.weight": "model-00006-of-00011.safetensors",
133
+ "model.layers.25.attention.wqkv.weight": "model-00006-of-00011.safetensors",
134
+ "model.layers.25.attention_norm.weight": "model-00006-of-00011.safetensors",
135
+ "model.layers.25.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
136
+ "model.layers.25.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
137
+ "model.layers.25.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
138
+ "model.layers.25.ffn_norm.weight": "model-00006-of-00011.safetensors",
139
+ "model.layers.26.attention.wo.weight": "model-00006-of-00011.safetensors",
140
+ "model.layers.26.attention.wqkv.weight": "model-00006-of-00011.safetensors",
141
+ "model.layers.26.attention_norm.weight": "model-00006-of-00011.safetensors",
142
+ "model.layers.26.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
143
+ "model.layers.26.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
144
+ "model.layers.26.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
145
+ "model.layers.26.ffn_norm.weight": "model-00006-of-00011.safetensors",
146
+ "model.layers.27.attention.wo.weight": "model-00006-of-00011.safetensors",
147
+ "model.layers.27.attention.wqkv.weight": "model-00006-of-00011.safetensors",
148
+ "model.layers.27.attention_norm.weight": "model-00006-of-00011.safetensors",
149
+ "model.layers.27.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
150
+ "model.layers.27.feed_forward.w2.weight": "model-00006-of-00011.safetensors",
151
+ "model.layers.27.feed_forward.w3.weight": "model-00006-of-00011.safetensors",
152
+ "model.layers.27.ffn_norm.weight": "model-00006-of-00011.safetensors",
153
+ "model.layers.28.attention.wo.weight": "model-00006-of-00011.safetensors",
154
+ "model.layers.28.attention.wqkv.weight": "model-00006-of-00011.safetensors",
155
+ "model.layers.28.attention_norm.weight": "model-00007-of-00011.safetensors",
156
+ "model.layers.28.feed_forward.w1.weight": "model-00006-of-00011.safetensors",
157
+ "model.layers.28.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
158
+ "model.layers.28.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
159
+ "model.layers.28.ffn_norm.weight": "model-00007-of-00011.safetensors",
160
+ "model.layers.29.attention.wo.weight": "model-00007-of-00011.safetensors",
161
+ "model.layers.29.attention.wqkv.weight": "model-00007-of-00011.safetensors",
162
+ "model.layers.29.attention_norm.weight": "model-00007-of-00011.safetensors",
163
+ "model.layers.29.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
164
+ "model.layers.29.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
165
+ "model.layers.29.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
166
+ "model.layers.29.ffn_norm.weight": "model-00007-of-00011.safetensors",
167
+ "model.layers.3.attention.wo.weight": "model-00001-of-00011.safetensors",
168
+ "model.layers.3.attention.wqkv.weight": "model-00001-of-00011.safetensors",
169
+ "model.layers.3.attention_norm.weight": "model-00002-of-00011.safetensors",
170
+ "model.layers.3.feed_forward.w1.weight": "model-00001-of-00011.safetensors",
171
+ "model.layers.3.feed_forward.w2.weight": "model-00002-of-00011.safetensors",
172
+ "model.layers.3.feed_forward.w3.weight": "model-00002-of-00011.safetensors",
173
+ "model.layers.3.ffn_norm.weight": "model-00002-of-00011.safetensors",
174
+ "model.layers.30.attention.wo.weight": "model-00007-of-00011.safetensors",
175
+ "model.layers.30.attention.wqkv.weight": "model-00007-of-00011.safetensors",
176
+ "model.layers.30.attention_norm.weight": "model-00007-of-00011.safetensors",
177
+ "model.layers.30.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
178
+ "model.layers.30.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
179
+ "model.layers.30.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
180
+ "model.layers.30.ffn_norm.weight": "model-00007-of-00011.safetensors",
181
+ "model.layers.31.attention.wo.weight": "model-00007-of-00011.safetensors",
182
+ "model.layers.31.attention.wqkv.weight": "model-00007-of-00011.safetensors",
183
+ "model.layers.31.attention_norm.weight": "model-00007-of-00011.safetensors",
184
+ "model.layers.31.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
185
+ "model.layers.31.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
186
+ "model.layers.31.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
187
+ "model.layers.31.ffn_norm.weight": "model-00007-of-00011.safetensors",
188
+ "model.layers.32.attention.wo.weight": "model-00007-of-00011.safetensors",
189
+ "model.layers.32.attention.wqkv.weight": "model-00007-of-00011.safetensors",
190
+ "model.layers.32.attention_norm.weight": "model-00007-of-00011.safetensors",
191
+ "model.layers.32.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
192
+ "model.layers.32.feed_forward.w2.weight": "model-00007-of-00011.safetensors",
193
+ "model.layers.32.feed_forward.w3.weight": "model-00007-of-00011.safetensors",
194
+ "model.layers.32.ffn_norm.weight": "model-00007-of-00011.safetensors",
195
+ "model.layers.33.attention.wo.weight": "model-00007-of-00011.safetensors",
196
+ "model.layers.33.attention.wqkv.weight": "model-00007-of-00011.safetensors",
197
+ "model.layers.33.attention_norm.weight": "model-00008-of-00011.safetensors",
198
+ "model.layers.33.feed_forward.w1.weight": "model-00007-of-00011.safetensors",
199
+ "model.layers.33.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
200
+ "model.layers.33.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
201
+ "model.layers.33.ffn_norm.weight": "model-00008-of-00011.safetensors",
202
+ "model.layers.34.attention.wo.weight": "model-00008-of-00011.safetensors",
203
+ "model.layers.34.attention.wqkv.weight": "model-00008-of-00011.safetensors",
204
+ "model.layers.34.attention_norm.weight": "model-00008-of-00011.safetensors",
205
+ "model.layers.34.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
206
+ "model.layers.34.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
207
+ "model.layers.34.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
208
+ "model.layers.34.ffn_norm.weight": "model-00008-of-00011.safetensors",
209
+ "model.layers.35.attention.wo.weight": "model-00008-of-00011.safetensors",
210
+ "model.layers.35.attention.wqkv.weight": "model-00008-of-00011.safetensors",
211
+ "model.layers.35.attention_norm.weight": "model-00008-of-00011.safetensors",
212
+ "model.layers.35.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
213
+ "model.layers.35.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
214
+ "model.layers.35.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
215
+ "model.layers.35.ffn_norm.weight": "model-00008-of-00011.safetensors",
216
+ "model.layers.36.attention.wo.weight": "model-00008-of-00011.safetensors",
217
+ "model.layers.36.attention.wqkv.weight": "model-00008-of-00011.safetensors",
218
+ "model.layers.36.attention_norm.weight": "model-00008-of-00011.safetensors",
219
+ "model.layers.36.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
220
+ "model.layers.36.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
221
+ "model.layers.36.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
222
+ "model.layers.36.ffn_norm.weight": "model-00008-of-00011.safetensors",
223
+ "model.layers.37.attention.wo.weight": "model-00008-of-00011.safetensors",
224
+ "model.layers.37.attention.wqkv.weight": "model-00008-of-00011.safetensors",
225
+ "model.layers.37.attention_norm.weight": "model-00008-of-00011.safetensors",
226
+ "model.layers.37.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
227
+ "model.layers.37.feed_forward.w2.weight": "model-00008-of-00011.safetensors",
228
+ "model.layers.37.feed_forward.w3.weight": "model-00008-of-00011.safetensors",
229
+ "model.layers.37.ffn_norm.weight": "model-00008-of-00011.safetensors",
230
+ "model.layers.38.attention.wo.weight": "model-00008-of-00011.safetensors",
231
+ "model.layers.38.attention.wqkv.weight": "model-00008-of-00011.safetensors",
232
+ "model.layers.38.attention_norm.weight": "model-00009-of-00011.safetensors",
233
+ "model.layers.38.feed_forward.w1.weight": "model-00008-of-00011.safetensors",
234
+ "model.layers.38.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
235
+ "model.layers.38.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
236
+ "model.layers.38.ffn_norm.weight": "model-00009-of-00011.safetensors",
237
+ "model.layers.39.attention.wo.weight": "model-00009-of-00011.safetensors",
238
+ "model.layers.39.attention.wqkv.weight": "model-00009-of-00011.safetensors",
239
+ "model.layers.39.attention_norm.weight": "model-00009-of-00011.safetensors",
240
+ "model.layers.39.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
241
+ "model.layers.39.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
242
+ "model.layers.39.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
243
+ "model.layers.39.ffn_norm.weight": "model-00009-of-00011.safetensors",
244
+ "model.layers.4.attention.wo.weight": "model-00002-of-00011.safetensors",
245
+ "model.layers.4.attention.wqkv.weight": "model-00002-of-00011.safetensors",
246
+ "model.layers.4.attention_norm.weight": "model-00002-of-00011.safetensors",
247
+ "model.layers.4.feed_forward.w1.weight": "model-00002-of-00011.safetensors",
248
+ "model.layers.4.feed_forward.w2.weight": "model-00002-of-00011.safetensors",
249
+ "model.layers.4.feed_forward.w3.weight": "model-00002-of-00011.safetensors",
250
+ "model.layers.4.ffn_norm.weight": "model-00002-of-00011.safetensors",
251
+ "model.layers.40.attention.wo.weight": "model-00009-of-00011.safetensors",
252
+ "model.layers.40.attention.wqkv.weight": "model-00009-of-00011.safetensors",
253
+ "model.layers.40.attention_norm.weight": "model-00009-of-00011.safetensors",
254
+ "model.layers.40.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
255
+ "model.layers.40.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
256
+ "model.layers.40.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
257
+ "model.layers.40.ffn_norm.weight": "model-00009-of-00011.safetensors",
258
+ "model.layers.41.attention.wo.weight": "model-00009-of-00011.safetensors",
259
+ "model.layers.41.attention.wqkv.weight": "model-00009-of-00011.safetensors",
260
+ "model.layers.41.attention_norm.weight": "model-00009-of-00011.safetensors",
261
+ "model.layers.41.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
262
+ "model.layers.41.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
263
+ "model.layers.41.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
264
+ "model.layers.41.ffn_norm.weight": "model-00009-of-00011.safetensors",
265
+ "model.layers.42.attention.wo.weight": "model-00009-of-00011.safetensors",
266
+ "model.layers.42.attention.wqkv.weight": "model-00009-of-00011.safetensors",
267
+ "model.layers.42.attention_norm.weight": "model-00009-of-00011.safetensors",
268
+ "model.layers.42.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
269
+ "model.layers.42.feed_forward.w2.weight": "model-00009-of-00011.safetensors",
270
+ "model.layers.42.feed_forward.w3.weight": "model-00009-of-00011.safetensors",
271
+ "model.layers.42.ffn_norm.weight": "model-00009-of-00011.safetensors",
272
+ "model.layers.43.attention.wo.weight": "model-00009-of-00011.safetensors",
273
+ "model.layers.43.attention.wqkv.weight": "model-00009-of-00011.safetensors",
274
+ "model.layers.43.attention_norm.weight": "model-00010-of-00011.safetensors",
275
+ "model.layers.43.feed_forward.w1.weight": "model-00009-of-00011.safetensors",
276
+ "model.layers.43.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
277
+ "model.layers.43.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
278
+ "model.layers.43.ffn_norm.weight": "model-00010-of-00011.safetensors",
279
+ "model.layers.44.attention.wo.weight": "model-00010-of-00011.safetensors",
280
+ "model.layers.44.attention.wqkv.weight": "model-00010-of-00011.safetensors",
281
+ "model.layers.44.attention_norm.weight": "model-00010-of-00011.safetensors",
282
+ "model.layers.44.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
283
+ "model.layers.44.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
284
+ "model.layers.44.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
285
+ "model.layers.44.ffn_norm.weight": "model-00010-of-00011.safetensors",
286
+ "model.layers.45.attention.wo.weight": "model-00010-of-00011.safetensors",
287
+ "model.layers.45.attention.wqkv.weight": "model-00010-of-00011.safetensors",
288
+ "model.layers.45.attention_norm.weight": "model-00010-of-00011.safetensors",
289
+ "model.layers.45.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
290
+ "model.layers.45.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
291
+ "model.layers.45.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
292
+ "model.layers.45.ffn_norm.weight": "model-00010-of-00011.safetensors",
293
+ "model.layers.46.attention.wo.weight": "model-00010-of-00011.safetensors",
294
+ "model.layers.46.attention.wqkv.weight": "model-00010-of-00011.safetensors",
295
+ "model.layers.46.attention_norm.weight": "model-00010-of-00011.safetensors",
296
+ "model.layers.46.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
297
+ "model.layers.46.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
298
+ "model.layers.46.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
299
+ "model.layers.46.ffn_norm.weight": "model-00010-of-00011.safetensors",
300
+ "model.layers.47.attention.wo.weight": "model-00010-of-00011.safetensors",
301
+ "model.layers.47.attention.wqkv.weight": "model-00010-of-00011.safetensors",
302
+ "model.layers.47.attention_norm.weight": "model-00010-of-00011.safetensors",
303
+ "model.layers.47.feed_forward.w1.weight": "model-00010-of-00011.safetensors",
304
+ "model.layers.47.feed_forward.w2.weight": "model-00010-of-00011.safetensors",
305
+ "model.layers.47.feed_forward.w3.weight": "model-00010-of-00011.safetensors",
306
+ "model.layers.47.ffn_norm.weight": "model-00010-of-00011.safetensors",
307
+ "model.layers.5.attention.wo.weight": "model-00002-of-00011.safetensors",
308
+ "model.layers.5.attention.wqkv.weight": "model-00002-of-00011.safetensors",
309
+ "model.layers.5.attention_norm.weight": "model-00002-of-00011.safetensors",
310
+ "model.layers.5.feed_forward.w1.weight": "model-00002-of-00011.safetensors",
311
+ "model.layers.5.feed_forward.w2.weight": "model-00002-of-00011.safetensors",
312
+ "model.layers.5.feed_forward.w3.weight": "model-00002-of-00011.safetensors",
313
+ "model.layers.5.ffn_norm.weight": "model-00002-of-00011.safetensors",
314
+ "model.layers.6.attention.wo.weight": "model-00002-of-00011.safetensors",
315
+ "model.layers.6.attention.wqkv.weight": "model-00002-of-00011.safetensors",
316
+ "model.layers.6.attention_norm.weight": "model-00002-of-00011.safetensors",
317
+ "model.layers.6.feed_forward.w1.weight": "model-00002-of-00011.safetensors",
318
+ "model.layers.6.feed_forward.w2.weight": "model-00002-of-00011.safetensors",
319
+ "model.layers.6.feed_forward.w3.weight": "model-00002-of-00011.safetensors",
320
+ "model.layers.6.ffn_norm.weight": "model-00002-of-00011.safetensors",
321
+ "model.layers.7.attention.wo.weight": "model-00002-of-00011.safetensors",
322
+ "model.layers.7.attention.wqkv.weight": "model-00002-of-00011.safetensors",
323
+ "model.layers.7.attention_norm.weight": "model-00002-of-00011.safetensors",
324
+ "model.layers.7.feed_forward.w1.weight": "model-00002-of-00011.safetensors",
325
+ "model.layers.7.feed_forward.w2.weight": "model-00002-of-00011.safetensors",
326
+ "model.layers.7.feed_forward.w3.weight": "model-00002-of-00011.safetensors",
327
+ "model.layers.7.ffn_norm.weight": "model-00002-of-00011.safetensors",
328
+ "model.layers.8.attention.wo.weight": "model-00002-of-00011.safetensors",
329
+ "model.layers.8.attention.wqkv.weight": "model-00002-of-00011.safetensors",
330
+ "model.layers.8.attention_norm.weight": "model-00003-of-00011.safetensors",
331
+ "model.layers.8.feed_forward.w1.weight": "model-00002-of-00011.safetensors",
332
+ "model.layers.8.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
333
+ "model.layers.8.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
334
+ "model.layers.8.ffn_norm.weight": "model-00003-of-00011.safetensors",
335
+ "model.layers.9.attention.wo.weight": "model-00003-of-00011.safetensors",
336
+ "model.layers.9.attention.wqkv.weight": "model-00003-of-00011.safetensors",
337
+ "model.layers.9.attention_norm.weight": "model-00003-of-00011.safetensors",
338
+ "model.layers.9.feed_forward.w1.weight": "model-00003-of-00011.safetensors",
339
+ "model.layers.9.feed_forward.w2.weight": "model-00003-of-00011.safetensors",
340
+ "model.layers.9.feed_forward.w3.weight": "model-00003-of-00011.safetensors",
341
+ "model.layers.9.ffn_norm.weight": "model-00003-of-00011.safetensors",
342
+ "model.norm.weight": "model-00010-of-00011.safetensors",
343
+ "model.tok_embeddings.weight": "model-00001-of-00011.safetensors",
344
+ "output.weight": "model-00011-of-00011.safetensors"
345
+ }
346
+ }
modeling_internlm2.py ADDED
@@ -0,0 +1,1391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (
31
+ BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ SequenceClassifierOutputWithPast,
34
+ )
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ logging,
40
+ replace_return_docstrings,
41
+ )
42
+
43
+ try:
44
+ from transformers.generation.streamers import BaseStreamer
45
+ except: # noqa # pylint: disable=bare-except
46
+ BaseStreamer = None
47
+
48
+ from .configuration_internlm2 import InternLM2Config
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+ _CONFIG_FOR_DOC = "InternLM2Config"
53
+
54
+ flash_attn_func, flash_attn_varlen_func = None, None
55
+ pad_input, index_first_axis, unpad_input = None, None, None
56
+ def _import_flash_attn():
57
+ global flash_attn_func, flash_attn_varlen_func
58
+ global pad_input, index_first_axis, unpad_input
59
+ try:
60
+ from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
61
+ from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
62
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
63
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
64
+ except ImportError:
65
+ raise ImportError("flash_attn is not installed.")
66
+
67
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
68
+ def _get_unpad_data(attention_mask):
69
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
70
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
71
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
72
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
73
+ return (
74
+ indices,
75
+ cu_seqlens,
76
+ max_seqlen_in_batch,
77
+ )
78
+
79
+
80
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
81
+ def _make_causal_mask(
82
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
83
+ ):
84
+ """
85
+ Make causal mask used for bi-directional self-attention.
86
+ """
87
+ bsz, tgt_len = input_ids_shape
88
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
89
+ mask_cond = torch.arange(mask.size(-1), device=device)
90
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
91
+ mask = mask.to(dtype)
92
+
93
+ if past_key_values_length > 0:
94
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
95
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
96
+
97
+
98
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
99
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
100
+ """
101
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
102
+ """
103
+ bsz, src_len = mask.size()
104
+ tgt_len = tgt_len if tgt_len is not None else src_len
105
+
106
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
107
+
108
+ inverted_mask = 1.0 - expanded_mask
109
+
110
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
111
+
112
+
113
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
114
+ class InternLM2RMSNorm(nn.Module):
115
+ def __init__(self, hidden_size, eps=1e-6):
116
+ """
117
+ InternLM2RMSNorm is equivalent to T5LayerNorm
118
+ """
119
+ super().__init__()
120
+ self.weight = nn.Parameter(torch.ones(hidden_size))
121
+ self.variance_epsilon = eps
122
+
123
+ def forward(self, hidden_states):
124
+ input_dtype = hidden_states.dtype
125
+ hidden_states = hidden_states.to(torch.float32)
126
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
127
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
128
+ return self.weight * hidden_states.to(input_dtype)
129
+
130
+
131
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
132
+ class InternLM2RotaryEmbedding(nn.Module):
133
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
134
+ super().__init__()
135
+
136
+ self.dim = dim
137
+ self.max_position_embeddings = max_position_embeddings
138
+ self.base = base
139
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
140
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
141
+
142
+ # Build here to make `torch.jit.trace` work.
143
+ self._set_cos_sin_cache(
144
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
145
+ )
146
+
147
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
148
+ self.max_seq_len_cached = seq_len
149
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
150
+
151
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
152
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
153
+ emb = torch.cat((freqs, freqs), dim=-1)
154
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
155
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
156
+
157
+ def forward(self, x, seq_len=None):
158
+ # x: [bs, num_attention_heads, seq_len, head_size]
159
+ if seq_len > self.max_seq_len_cached:
160
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
161
+
162
+ return (
163
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
164
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
165
+ )
166
+
167
+
168
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
169
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
170
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
171
+
172
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
173
+ self.scaling_factor = scaling_factor
174
+ super().__init__(dim, max_position_embeddings, base, device)
175
+
176
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
177
+ self.max_seq_len_cached = seq_len
178
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
179
+ t = t / self.scaling_factor
180
+
181
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
182
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
183
+ emb = torch.cat((freqs, freqs), dim=-1)
184
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
185
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
186
+
187
+
188
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
189
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
190
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
191
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
192
+ """
193
+
194
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
195
+ self.scaling_factor = scaling_factor
196
+ super().__init__(dim, max_position_embeddings, base, device)
197
+
198
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
199
+ self.max_seq_len_cached = seq_len
200
+
201
+ if seq_len > self.max_position_embeddings:
202
+ base = self.base * (
203
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
204
+ ) ** (self.dim / (self.dim - 2))
205
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
206
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
207
+
208
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
209
+
210
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
211
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
212
+ emb = torch.cat((freqs, freqs), dim=-1)
213
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
214
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
215
+
216
+
217
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
218
+ def rotate_half(x):
219
+ """Rotates half the hidden dims of the input."""
220
+ x1 = x[..., : x.shape[-1] // 2]
221
+ x2 = x[..., x.shape[-1] // 2 :]
222
+ return torch.cat((-x2, x1), dim=-1)
223
+
224
+
225
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
226
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
227
+ """Applies Rotary Position Embedding to the query and key tensors."""
228
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
229
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
230
+ q_embed = (q * cos) + (rotate_half(q) * sin)
231
+ k_embed = (k * cos) + (rotate_half(k) * sin)
232
+ return q_embed, k_embed
233
+
234
+
235
+ class InternLM2MLP(nn.Module):
236
+ def __init__(self, config):
237
+ super().__init__()
238
+ self.config = config
239
+ self.hidden_size = config.hidden_size
240
+ self.intermediate_size = config.intermediate_size
241
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
242
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
243
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
244
+ self.act_fn = ACT2FN[config.hidden_act]
245
+
246
+ def forward(self, x):
247
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
248
+
249
+ return down_proj
250
+
251
+
252
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
253
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
254
+ """
255
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
256
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
257
+ """
258
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
259
+ if n_rep == 1:
260
+ return hidden_states
261
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
262
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
263
+
264
+
265
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
266
+ class InternLM2Attention(nn.Module):
267
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
268
+
269
+ def __init__(self, config: InternLM2Config):
270
+ super().__init__()
271
+ self.config = config
272
+ self.hidden_size = config.hidden_size
273
+ self.num_heads = config.num_attention_heads
274
+ self.head_dim = self.hidden_size // self.num_heads
275
+ self.num_key_value_heads = config.num_key_value_heads
276
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
277
+ self.max_position_embeddings = config.max_position_embeddings
278
+ self.is_causal = True
279
+
280
+ if (self.head_dim * self.num_heads) != self.hidden_size:
281
+ raise ValueError(
282
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
283
+ f" and `num_heads`: {self.num_heads})."
284
+ )
285
+
286
+ self.wqkv = nn.Linear(
287
+ self.hidden_size,
288
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
289
+ bias=config.bias,
290
+ )
291
+
292
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
293
+ self._init_rope()
294
+
295
+ def _init_rope(self):
296
+ if self.config.rope_scaling is None:
297
+ self.rotary_emb = InternLM2RotaryEmbedding(
298
+ self.head_dim,
299
+ max_position_embeddings=self.max_position_embeddings,
300
+ base=self.config.rope_theta,
301
+ )
302
+ else:
303
+ scaling_type = self.config.rope_scaling["type"]
304
+ scaling_factor = self.config.rope_scaling["factor"]
305
+ if scaling_type == "dynamic":
306
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
307
+ self.head_dim,
308
+ max_position_embeddings=self.max_position_embeddings,
309
+ base=self.config.rope_theta,
310
+ scaling_factor=scaling_factor,
311
+ )
312
+ elif scaling_type == "linear":
313
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
314
+ self.head_dim,
315
+ max_position_embeddings=self.max_position_embeddings,
316
+ base=self.config.rope_theta,
317
+ scaling_factor=scaling_factor,
318
+ )
319
+ else:
320
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
321
+ return self.rotary_emb
322
+
323
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
324
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
325
+
326
+ def forward(
327
+ self,
328
+ hidden_states: torch.Tensor,
329
+ attention_mask: Optional[torch.Tensor] = None,
330
+ position_ids: Optional[torch.LongTensor] = None,
331
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
332
+ output_attentions: bool = False,
333
+ use_cache: bool = False,
334
+ **kwargs,
335
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
336
+ if "padding_mask" in kwargs:
337
+ warnings.warn(
338
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
339
+ "Please make sure use `attention_mask` instead.`"
340
+ )
341
+
342
+ bsz, q_len, _ = hidden_states.size()
343
+
344
+ qkv_states = self.wqkv(hidden_states)
345
+
346
+ qkv_states = rearrange(
347
+ qkv_states,
348
+ "b q (h gs d) -> b q h gs d",
349
+ gs=2 + self.num_key_value_groups,
350
+ d=self.head_dim,
351
+ )
352
+
353
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
354
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
355
+ key_states = qkv_states[..., -2, :]
356
+ value_states = qkv_states[..., -1, :]
357
+
358
+ query_states = query_states.transpose(1, 2)
359
+ key_states = key_states.transpose(1, 2)
360
+ value_states = value_states.transpose(1, 2)
361
+
362
+ kv_seq_len = key_states.shape[-2]
363
+ if past_key_value is not None:
364
+ kv_seq_len += past_key_value[0].shape[-2]
365
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
366
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
367
+
368
+ if past_key_value is not None:
369
+ # reuse k, v, self_attention
370
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
371
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
372
+
373
+ past_key_value = (key_states, value_states) if use_cache else None
374
+
375
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
376
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
377
+
378
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
379
+
380
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
381
+ raise ValueError(
382
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
383
+ f" {attn_weights.size()}"
384
+ )
385
+
386
+ if attention_mask is not None:
387
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
388
+ raise ValueError(
389
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
390
+ )
391
+ attn_weights = attn_weights + attention_mask
392
+
393
+ # upcast attention to fp32
394
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
395
+ attn_output = torch.matmul(attn_weights, value_states)
396
+
397
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
398
+ raise ValueError(
399
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
400
+ f" {attn_output.size()}"
401
+ )
402
+
403
+ attn_output = attn_output.transpose(1, 2).contiguous()
404
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
405
+
406
+ attn_output = self.wo(attn_output)
407
+
408
+ if not output_attentions:
409
+ attn_weights = None
410
+
411
+ return attn_output, attn_weights, past_key_value
412
+
413
+
414
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
415
+ class InternLM2FlashAttention2(InternLM2Attention):
416
+ """
417
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
418
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
419
+ flash attention and deal with padding tokens in case the input contains any of them.
420
+ """
421
+
422
+ def forward(
423
+ self,
424
+ hidden_states: torch.Tensor,
425
+ attention_mask: Optional[torch.LongTensor] = None,
426
+ position_ids: Optional[torch.LongTensor] = None,
427
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
428
+ output_attentions: bool = False,
429
+ use_cache: bool = False,
430
+ **kwargs,
431
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
432
+ # InternLM2FlashAttention2 attention does not support output_attentions
433
+ if "padding_mask" in kwargs:
434
+ warnings.warn(
435
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
436
+ "Please make sure use `attention_mask` instead.`"
437
+ )
438
+
439
+ # overwrite attention_mask with padding_mask
440
+ attention_mask = kwargs.pop("padding_mask")
441
+
442
+ output_attentions = False
443
+
444
+ bsz, q_len, _ = hidden_states.size()
445
+
446
+ qkv_states = self.wqkv(hidden_states)
447
+
448
+ qkv_states = rearrange(
449
+ qkv_states,
450
+ "b q (h gs d) -> b q h gs d",
451
+ gs=2 + self.num_key_value_groups,
452
+ d=self.head_dim,
453
+ )
454
+
455
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
456
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
457
+ key_states = qkv_states[..., -2, :]
458
+ value_states = qkv_states[..., -1, :]
459
+
460
+ query_states = query_states.transpose(1, 2)
461
+ key_states = key_states.transpose(1, 2)
462
+ value_states = value_states.transpose(1, 2)
463
+
464
+ kv_seq_len = key_states.shape[-2]
465
+ if past_key_value is not None:
466
+ kv_seq_len += past_key_value[0].shape[-2]
467
+
468
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
469
+
470
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
471
+
472
+ if past_key_value is not None:
473
+ # reuse k, v, self_attention
474
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
475
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
476
+
477
+ past_key_value = (key_states, value_states) if use_cache else None
478
+
479
+ query_states = query_states.transpose(1, 2)
480
+ key_states = key_states.transpose(1, 2)
481
+ value_states = value_states.transpose(1, 2)
482
+
483
+ attn_output = self._flash_attention_forward(
484
+ query_states, key_states, value_states, attention_mask, q_len
485
+ )
486
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
487
+ attn_output = self.wo(attn_output)
488
+
489
+ if not output_attentions:
490
+ attn_weights = None
491
+
492
+ return attn_output, attn_weights, past_key_value
493
+
494
+ def _flash_attention_forward(
495
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
496
+ ):
497
+ """
498
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
499
+ first unpad the input, then computes the attention scores and pad the final attention scores.
500
+
501
+ Args:
502
+ query_states (`torch.Tensor`):
503
+ Input query states to be passed to Flash Attention API
504
+ key_states (`torch.Tensor`):
505
+ Input key states to be passed to Flash Attention API
506
+ value_states (`torch.Tensor`):
507
+ Input value states to be passed to Flash Attention API
508
+ attention_mask (`torch.Tensor`):
509
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
510
+ position of padding tokens and 1 for the position of non-padding tokens.
511
+ dropout (`int`, *optional*):
512
+ Attention dropout
513
+ softmax_scale (`float`, *optional*):
514
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
515
+ """
516
+ # Contains at least one padding token in the sequence
517
+ causal = self.is_causal and query_length != 1
518
+ if attention_mask is not None:
519
+ batch_size = query_states.shape[0]
520
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
521
+ query_states, key_states, value_states, attention_mask, query_length
522
+ )
523
+
524
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
525
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
526
+
527
+ attn_output_unpad = flash_attn_varlen_func(
528
+ query_states,
529
+ key_states,
530
+ value_states,
531
+ cu_seqlens_q=cu_seqlens_q,
532
+ cu_seqlens_k=cu_seqlens_k,
533
+ max_seqlen_q=max_seqlen_in_batch_q,
534
+ max_seqlen_k=max_seqlen_in_batch_k,
535
+ dropout_p=dropout,
536
+ softmax_scale=softmax_scale,
537
+ causal=causal,
538
+ )
539
+
540
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
541
+ else:
542
+ attn_output = flash_attn_func(
543
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
544
+ )
545
+
546
+ return attn_output
547
+
548
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
549
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
550
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
551
+
552
+ key_layer = index_first_axis(
553
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
554
+ )
555
+ value_layer = index_first_axis(
556
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
557
+ )
558
+
559
+ if query_length == kv_seq_len:
560
+ query_layer = index_first_axis(
561
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
562
+ )
563
+ cu_seqlens_q = cu_seqlens_k
564
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
565
+ indices_q = indices_k
566
+ elif query_length == 1:
567
+ max_seqlen_in_batch_q = 1
568
+ cu_seqlens_q = torch.arange(
569
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
570
+ ) # There is a memcpy here, that is very bad.
571
+ indices_q = cu_seqlens_q[:-1]
572
+ query_layer = query_layer.squeeze(1)
573
+ else:
574
+ # The -q_len: slice assumes left padding.
575
+ attention_mask = attention_mask[:, -query_length:]
576
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
577
+
578
+ return (
579
+ query_layer,
580
+ key_layer,
581
+ value_layer,
582
+ indices_q.to(torch.int64),
583
+ (cu_seqlens_q, cu_seqlens_k),
584
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
585
+ )
586
+
587
+ INTERNLM2_ATTENTION_CLASSES = {
588
+ "eager": InternLM2Attention,
589
+ "flash_attention_2": InternLM2FlashAttention2,
590
+ }
591
+
592
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
593
+ class InternLM2DecoderLayer(nn.Module):
594
+ def __init__(self, config: InternLM2Config):
595
+ super().__init__()
596
+ self.hidden_size = config.hidden_size
597
+
598
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
599
+
600
+ self.feed_forward = InternLM2MLP(config)
601
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
602
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
603
+
604
+ def forward(
605
+ self,
606
+ hidden_states: torch.Tensor,
607
+ attention_mask: Optional[torch.Tensor] = None,
608
+ position_ids: Optional[torch.LongTensor] = None,
609
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
610
+ output_attentions: Optional[bool] = False,
611
+ use_cache: Optional[bool] = False,
612
+ **kwargs,
613
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
614
+ """
615
+ Args:
616
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
617
+ attention_mask (`torch.FloatTensor`, *optional*):
618
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
619
+ query_sequence_length, key_sequence_length)` if default attention is used.
620
+ output_attentions (`bool`, *optional*):
621
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
622
+ returned tensors for more detail.
623
+ use_cache (`bool`, *optional*):
624
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
625
+ (see `past_key_values`).
626
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
627
+ """
628
+ if "padding_mask" in kwargs:
629
+ warnings.warn(
630
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
631
+ "Please make sure use `attention_mask` instead.`"
632
+ )
633
+
634
+ residual = hidden_states
635
+
636
+ hidden_states = self.attention_norm(hidden_states)
637
+
638
+ # Self Attention
639
+ hidden_states, self_attn_weights, present_key_value = self.attention(
640
+ hidden_states=hidden_states,
641
+ attention_mask=attention_mask,
642
+ position_ids=position_ids,
643
+ past_key_value=past_key_value,
644
+ output_attentions=output_attentions,
645
+ use_cache=use_cache,
646
+ **kwargs,
647
+ )
648
+ hidden_states = residual + hidden_states
649
+
650
+ # Fully Connected
651
+ residual = hidden_states
652
+ hidden_states = self.ffn_norm(hidden_states)
653
+ hidden_states = self.feed_forward(hidden_states)
654
+ hidden_states = residual + hidden_states
655
+
656
+ outputs = (hidden_states,)
657
+
658
+ if output_attentions:
659
+ outputs += (self_attn_weights,)
660
+
661
+ if use_cache:
662
+ outputs += (present_key_value,)
663
+
664
+ return outputs
665
+
666
+
667
+ InternLM2_START_DOCSTRING = r"""
668
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
669
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
670
+ etc.)
671
+
672
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
673
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
674
+ and behavior.
675
+
676
+ Parameters:
677
+ config ([`InternLM2Config`]):
678
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
679
+ load the weights associated with the model, only the configuration. Check out the
680
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
681
+ """
682
+
683
+
684
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
685
+ @add_start_docstrings(
686
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
687
+ InternLM2_START_DOCSTRING,
688
+ )
689
+ class InternLM2PreTrainedModel(PreTrainedModel):
690
+ config_class = InternLM2Config
691
+ base_model_prefix = "model"
692
+ supports_gradient_checkpointing = True
693
+ _no_split_modules = ["InternLM2DecoderLayer"]
694
+ _skip_keys_device_placement = "past_key_values"
695
+
696
+ def _init_weights(self, module):
697
+ std = self.config.initializer_range
698
+ if isinstance(module, nn.Linear):
699
+ module.weight.data.normal_(mean=0.0, std=std)
700
+ if module.bias is not None:
701
+ module.bias.data.zero_()
702
+ elif isinstance(module, nn.Embedding):
703
+ module.weight.data.normal_(mean=0.0, std=std)
704
+ if module.padding_idx is not None:
705
+ module.weight.data[module.padding_idx].zero_()
706
+
707
+
708
+ InternLM2_INPUTS_DOCSTRING = r"""
709
+ Args:
710
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
711
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
712
+ it.
713
+
714
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
715
+ [`PreTrainedTokenizer.__call__`] for details.
716
+
717
+ [What are input IDs?](../glossary#input-ids)
718
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
719
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
720
+
721
+ - 1 for tokens that are **not masked**,
722
+ - 0 for tokens that are **masked**.
723
+
724
+ [What are attention masks?](../glossary#attention-mask)
725
+
726
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
727
+ [`PreTrainedTokenizer.__call__`] for details.
728
+
729
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
730
+ `past_key_values`).
731
+
732
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
733
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
734
+ information on the default strategy.
735
+
736
+ - 1 indicates the head is **not masked**,
737
+ - 0 indicates the head is **masked**.
738
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
739
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
740
+ config.n_positions - 1]`.
741
+
742
+ [What are position IDs?](../glossary#position-ids)
743
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
744
+ when `config.use_cache=True`):
745
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
746
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
747
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
748
+
749
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
750
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
751
+
752
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
753
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
754
+ of shape `(batch_size, sequence_length)`.
755
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
756
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
757
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
758
+ model's internal embedding lookup matrix.
759
+ use_cache (`bool`, *optional*):
760
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
761
+ `past_key_values`).
762
+ output_attentions (`bool`, *optional*):
763
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
764
+ tensors for more detail.
765
+ output_hidden_states (`bool`, *optional*):
766
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
767
+ more detail.
768
+ return_dict (`bool`, *optional*):
769
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
770
+ """
771
+
772
+
773
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
774
+ @add_start_docstrings(
775
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
776
+ InternLM2_START_DOCSTRING,
777
+ )
778
+ class InternLM2Model(InternLM2PreTrainedModel):
779
+ """
780
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
781
+
782
+ Args:
783
+ config: InternLM2Config
784
+ """
785
+
786
+ _auto_class = "AutoModel"
787
+
788
+ def __init__(self, config: InternLM2Config):
789
+ super().__init__(config)
790
+ self.padding_idx = config.pad_token_id
791
+ self.vocab_size = config.vocab_size
792
+ self.config = config
793
+
794
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
795
+
796
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
797
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
798
+
799
+ self.gradient_checkpointing = False
800
+ # Initialize weights and apply final processing
801
+ self.post_init()
802
+
803
+ def get_input_embeddings(self):
804
+ return self.tok_embeddings
805
+
806
+ def set_input_embeddings(self, value):
807
+ self.tok_embeddings = value
808
+
809
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
810
+ # create causal mask
811
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
812
+ combined_attention_mask = None
813
+ if input_shape[-1] > 1:
814
+ combined_attention_mask = _make_causal_mask(
815
+ input_shape,
816
+ inputs_embeds.dtype,
817
+ device=inputs_embeds.device,
818
+ past_key_values_length=past_key_values_length,
819
+ )
820
+
821
+ if attention_mask is not None:
822
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
823
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
824
+ inputs_embeds.device
825
+ )
826
+ combined_attention_mask = (
827
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
828
+ )
829
+
830
+ return combined_attention_mask
831
+
832
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
833
+ def forward(
834
+ self,
835
+ input_ids: torch.LongTensor = None,
836
+ attention_mask: Optional[torch.Tensor] = None,
837
+ position_ids: Optional[torch.LongTensor] = None,
838
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
839
+ inputs_embeds: Optional[torch.FloatTensor] = None,
840
+ use_cache: Optional[bool] = None,
841
+ output_attentions: Optional[bool] = None,
842
+ output_hidden_states: Optional[bool] = None,
843
+ return_dict: Optional[bool] = None,
844
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
845
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
846
+ output_hidden_states = (
847
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
848
+ )
849
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
850
+
851
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
852
+
853
+ if self.config.attn_implementation == "flash_attention_2":
854
+ _import_flash_attn()
855
+
856
+ # retrieve input_ids and inputs_embeds
857
+ if input_ids is not None and inputs_embeds is not None:
858
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
859
+ elif input_ids is not None:
860
+ batch_size, seq_length = input_ids.shape[:2]
861
+ elif inputs_embeds is not None:
862
+ batch_size, seq_length = inputs_embeds.shape[:2]
863
+ else:
864
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
865
+
866
+ seq_length_with_past = seq_length
867
+ past_key_values_length = 0
868
+ if past_key_values is not None:
869
+ past_key_values_length = past_key_values[0][0].shape[2]
870
+ seq_length_with_past = seq_length_with_past + past_key_values_length
871
+
872
+ if position_ids is None:
873
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
874
+ position_ids = torch.arange(
875
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
876
+ )
877
+ position_ids = position_ids.unsqueeze(0)
878
+
879
+ if inputs_embeds is None:
880
+ inputs_embeds = self.tok_embeddings(input_ids)
881
+
882
+ if self.config.attn_implementation == "flash_attention_2":
883
+ # 2d mask is passed through the layers
884
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
885
+ else:
886
+ if attention_mask is None:
887
+ attention_mask = torch.ones(
888
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
889
+ )
890
+ attention_mask = self._prepare_decoder_attention_mask(
891
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
892
+ )
893
+
894
+ # embed positions
895
+ hidden_states = inputs_embeds
896
+
897
+ if self.gradient_checkpointing and self.training:
898
+ if use_cache:
899
+ logger.warning_once(
900
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
901
+ )
902
+ use_cache = False
903
+
904
+ # decoder layers
905
+ all_hidden_states = () if output_hidden_states else None
906
+ all_self_attns = () if output_attentions else None
907
+ next_decoder_cache = () if use_cache else None
908
+
909
+ for idx, decoder_layer in enumerate(self.layers):
910
+ if output_hidden_states:
911
+ all_hidden_states += (hidden_states,)
912
+
913
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
914
+
915
+ if self.gradient_checkpointing and self.training:
916
+
917
+ def create_custom_forward(module):
918
+ def custom_forward(*inputs):
919
+ # None for past_key_value
920
+ return module(*inputs, output_attentions, None)
921
+
922
+ return custom_forward
923
+
924
+ layer_outputs = torch.utils.checkpoint.checkpoint(
925
+ create_custom_forward(decoder_layer),
926
+ hidden_states,
927
+ attention_mask,
928
+ position_ids,
929
+ None,
930
+ )
931
+ else:
932
+ layer_outputs = decoder_layer(
933
+ hidden_states,
934
+ attention_mask=attention_mask,
935
+ position_ids=position_ids,
936
+ past_key_value=past_key_value,
937
+ output_attentions=output_attentions,
938
+ use_cache=use_cache,
939
+ )
940
+
941
+ hidden_states = layer_outputs[0]
942
+
943
+ if use_cache:
944
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
945
+
946
+ if output_attentions:
947
+ all_self_attns += (layer_outputs[1],)
948
+
949
+ hidden_states = self.norm(hidden_states)
950
+
951
+ # add hidden states from the last decoder layer
952
+ if output_hidden_states:
953
+ all_hidden_states += (hidden_states,)
954
+
955
+ next_cache = next_decoder_cache if use_cache else None
956
+ if not return_dict:
957
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
958
+ return BaseModelOutputWithPast(
959
+ last_hidden_state=hidden_states,
960
+ past_key_values=next_cache,
961
+ hidden_states=all_hidden_states,
962
+ attentions=all_self_attns,
963
+ )
964
+
965
+
966
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
967
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
968
+ _auto_class = "AutoModelForCausalLM"
969
+
970
+ _tied_weights_keys = ["output.weight"]
971
+
972
+ def __init__(self, config):
973
+ super().__init__(config)
974
+ self.model = InternLM2Model(config)
975
+ self.vocab_size = config.vocab_size
976
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
977
+
978
+ # Initialize weights and apply final processing
979
+ self.post_init()
980
+
981
+ def get_input_embeddings(self):
982
+ return self.model.tok_embeddings
983
+
984
+ def set_input_embeddings(self, value):
985
+ self.model.tok_embeddings = value
986
+
987
+ def get_output_embeddings(self):
988
+ return self.output
989
+
990
+ def set_output_embeddings(self, new_embeddings):
991
+ self.output = new_embeddings
992
+
993
+ def set_decoder(self, decoder):
994
+ self.model = decoder
995
+
996
+ def get_decoder(self):
997
+ return self.model
998
+
999
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1000
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1001
+ def forward(
1002
+ self,
1003
+ input_ids: torch.LongTensor = None,
1004
+ attention_mask: Optional[torch.Tensor] = None,
1005
+ position_ids: Optional[torch.LongTensor] = None,
1006
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1007
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1008
+ labels: Optional[torch.LongTensor] = None,
1009
+ use_cache: Optional[bool] = None,
1010
+ output_attentions: Optional[bool] = None,
1011
+ output_hidden_states: Optional[bool] = None,
1012
+ return_dict: Optional[bool] = None,
1013
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1014
+ r"""
1015
+ Args:
1016
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1017
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1018
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1019
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1020
+
1021
+ Returns:
1022
+
1023
+ Example:
1024
+
1025
+ ```python
1026
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1027
+
1028
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1029
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1030
+
1031
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1032
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1033
+
1034
+ >>> # Generate
1035
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1036
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1037
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1038
+ ```"""
1039
+
1040
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1041
+ output_hidden_states = (
1042
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1043
+ )
1044
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1045
+
1046
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1047
+ outputs = self.model(
1048
+ input_ids=input_ids,
1049
+ attention_mask=attention_mask,
1050
+ position_ids=position_ids,
1051
+ past_key_values=past_key_values,
1052
+ inputs_embeds=inputs_embeds,
1053
+ use_cache=use_cache,
1054
+ output_attentions=output_attentions,
1055
+ output_hidden_states=output_hidden_states,
1056
+ return_dict=return_dict,
1057
+ )
1058
+
1059
+ hidden_states = outputs[0]
1060
+ logits = self.output(hidden_states)
1061
+ logits = logits.float()
1062
+
1063
+ loss = None
1064
+ if labels is not None:
1065
+ # Shift so that tokens < n predict n
1066
+ shift_logits = logits[..., :-1, :].contiguous()
1067
+ shift_labels = labels[..., 1:].contiguous()
1068
+ # Flatten the tokens
1069
+ loss_fct = CrossEntropyLoss()
1070
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1071
+ shift_labels = shift_labels.view(-1)
1072
+ # Enable model parallelism
1073
+ shift_labels = shift_labels.to(shift_logits.device)
1074
+ loss = loss_fct(shift_logits, shift_labels)
1075
+
1076
+ if not return_dict:
1077
+ output = (logits,) + outputs[1:]
1078
+ return (loss,) + output if loss is not None else output
1079
+
1080
+ return CausalLMOutputWithPast(
1081
+ loss=loss,
1082
+ logits=logits,
1083
+ past_key_values=outputs.past_key_values,
1084
+ hidden_states=outputs.hidden_states,
1085
+ attentions=outputs.attentions,
1086
+ )
1087
+
1088
+ def prepare_inputs_for_generation(
1089
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1090
+ ):
1091
+ if past_key_values is not None:
1092
+ past_length = past_key_values[0][0].shape[2]
1093
+
1094
+ # Some generation methods already pass only the last input ID
1095
+ if input_ids.shape[1] > past_length:
1096
+ remove_prefix_length = past_length
1097
+ else:
1098
+ # Default to old behavior: keep only final ID
1099
+ remove_prefix_length = input_ids.shape[1] - 1
1100
+
1101
+ input_ids = input_ids[:, remove_prefix_length:]
1102
+
1103
+ position_ids = kwargs.get("position_ids", None)
1104
+ if attention_mask is not None and position_ids is None:
1105
+ # create position_ids on the fly for batch generation
1106
+ position_ids = attention_mask.long().cumsum(-1) - 1
1107
+ position_ids.masked_fill_(attention_mask == 0, 1)
1108
+ if past_key_values:
1109
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1110
+
1111
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1112
+ if inputs_embeds is not None and past_key_values is None:
1113
+ model_inputs = {"inputs_embeds": inputs_embeds}
1114
+ else:
1115
+ model_inputs = {"input_ids": input_ids}
1116
+
1117
+ model_inputs.update(
1118
+ {
1119
+ "position_ids": position_ids,
1120
+ "past_key_values": past_key_values,
1121
+ "use_cache": kwargs.get("use_cache"),
1122
+ "attention_mask": attention_mask,
1123
+ }
1124
+ )
1125
+ return model_inputs
1126
+
1127
+ @staticmethod
1128
+ def _reorder_cache(past_key_values, beam_idx):
1129
+ reordered_past = ()
1130
+ for layer_past in past_key_values:
1131
+ reordered_past += (
1132
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1133
+ )
1134
+ return reordered_past
1135
+
1136
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
1137
+ if tokenizer.add_bos_token:
1138
+ prompt = ""
1139
+ else:
1140
+ prompt = tokenizer.bos_token
1141
+ if meta_instruction:
1142
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1143
+ for record in history:
1144
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1145
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1146
+ return tokenizer([prompt], return_tensors="pt")
1147
+
1148
+ @torch.no_grad()
1149
+ def chat(
1150
+ self,
1151
+ tokenizer,
1152
+ query: str,
1153
+ history: List[Tuple[str, str]] = [],
1154
+ streamer: Optional[BaseStreamer] = None,
1155
+ max_new_tokens: int = 1024,
1156
+ do_sample: bool = True,
1157
+ temperature: float = 0.8,
1158
+ top_p: float = 0.8,
1159
+ meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
1160
+ "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
1161
+ "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
1162
+ **kwargs,
1163
+ ):
1164
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1165
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1166
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1167
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
1168
+ outputs = self.generate(
1169
+ **inputs,
1170
+ streamer=streamer,
1171
+ max_new_tokens=max_new_tokens,
1172
+ do_sample=do_sample,
1173
+ temperature=temperature,
1174
+ top_p=top_p,
1175
+ eos_token_id=eos_token_id,
1176
+ **kwargs,
1177
+ )
1178
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
1179
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1180
+ response = response.split("<|im_end|>")[0]
1181
+ history = history + [(query, response)]
1182
+ return response, history
1183
+
1184
+ @torch.no_grad()
1185
+ def stream_chat(
1186
+ self,
1187
+ tokenizer,
1188
+ query: str,
1189
+ history: List[Tuple[str, str]] = [],
1190
+ max_new_tokens: int = 1024,
1191
+ do_sample: bool = True,
1192
+ temperature: float = 0.8,
1193
+ top_p: float = 0.8,
1194
+ **kwargs,
1195
+ ):
1196
+ """
1197
+ Return a generator in format: (response, history)
1198
+ Eg.
1199
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1200
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1201
+ """
1202
+ if BaseStreamer is None:
1203
+ raise ModuleNotFoundError(
1204
+ "The version of `transformers` is too low. Please make sure "
1205
+ "that you have installed `transformers>=4.28.0`."
1206
+ )
1207
+
1208
+ response_queue = queue.Queue(maxsize=20)
1209
+
1210
+ class ChatStreamer(BaseStreamer):
1211
+ def __init__(self, tokenizer) -> None:
1212
+ super().__init__()
1213
+ self.tokenizer = tokenizer
1214
+ self.queue = response_queue
1215
+ self.query = query
1216
+ self.history = history
1217
+ self.response = ""
1218
+ self.cache = []
1219
+ self.received_inputs = False
1220
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1221
+
1222
+ def put(self, value):
1223
+ if len(value.shape) > 1 and value.shape[0] > 1:
1224
+ raise ValueError("ChatStreamer only supports batch size 1")
1225
+ elif len(value.shape) > 1:
1226
+ value = value[0]
1227
+
1228
+ if not self.received_inputs:
1229
+ # The first received value is input_ids, ignore here
1230
+ self.received_inputs = True
1231
+ return
1232
+
1233
+ self.cache.extend(value.tolist())
1234
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1235
+ if token.strip() != "<|im_end|>":
1236
+ self.response = self.response + token
1237
+ history = self.history + [(self.query, self.response)]
1238
+ self.queue.put((self.response, history))
1239
+ self.cache = []
1240
+ else:
1241
+ self.end()
1242
+
1243
+ def end(self):
1244
+ self.queue.put(None)
1245
+
1246
+ def stream_producer():
1247
+ return self.chat(
1248
+ tokenizer=tokenizer,
1249
+ query=query,
1250
+ streamer=ChatStreamer(tokenizer=tokenizer),
1251
+ history=history,
1252
+ max_new_tokens=max_new_tokens,
1253
+ do_sample=do_sample,
1254
+ temperature=temperature,
1255
+ top_p=top_p,
1256
+ **kwargs,
1257
+ )
1258
+
1259
+ def consumer():
1260
+ producer = threading.Thread(target=stream_producer)
1261
+ producer.start()
1262
+ while True:
1263
+ res = response_queue.get()
1264
+ if res is None:
1265
+ return
1266
+ yield res
1267
+
1268
+ return consumer()
1269
+
1270
+
1271
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1272
+ @add_start_docstrings(
1273
+ """
1274
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1275
+
1276
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1277
+ as other causal models (e.g. GPT-2) do.
1278
+
1279
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1280
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1281
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1282
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1283
+ each row of the batch).
1284
+ """,
1285
+ InternLM2_START_DOCSTRING,
1286
+ )
1287
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1288
+ def __init__(self, config):
1289
+ super().__init__(config)
1290
+ self.num_labels = config.num_labels
1291
+ self.model = InternLM2Model(config)
1292
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1293
+
1294
+ # Initialize weights and apply final processing
1295
+ self.post_init()
1296
+
1297
+ def get_input_embeddings(self):
1298
+ return self.model.tok_embeddings
1299
+
1300
+ def set_input_embeddings(self, value):
1301
+ self.model.tok_embeddings = value
1302
+
1303
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1304
+ def forward(
1305
+ self,
1306
+ input_ids: torch.LongTensor = None,
1307
+ attention_mask: Optional[torch.Tensor] = None,
1308
+ position_ids: Optional[torch.LongTensor] = None,
1309
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1310
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1311
+ labels: Optional[torch.LongTensor] = None,
1312
+ use_cache: Optional[bool] = None,
1313
+ output_attentions: Optional[bool] = None,
1314
+ output_hidden_states: Optional[bool] = None,
1315
+ return_dict: Optional[bool] = None,
1316
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1317
+ r"""
1318
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1319
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1320
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1321
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1322
+ """
1323
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1324
+
1325
+ transformer_outputs = self.model(
1326
+ input_ids,
1327
+ attention_mask=attention_mask,
1328
+ position_ids=position_ids,
1329
+ past_key_values=past_key_values,
1330
+ inputs_embeds=inputs_embeds,
1331
+ use_cache=use_cache,
1332
+ output_attentions=output_attentions,
1333
+ output_hidden_states=output_hidden_states,
1334
+ return_dict=return_dict,
1335
+ )
1336
+ hidden_states = transformer_outputs[0]
1337
+ logits = self.score(hidden_states)
1338
+
1339
+ if input_ids is not None:
1340
+ batch_size = input_ids.shape[0]
1341
+ else:
1342
+ batch_size = inputs_embeds.shape[0]
1343
+
1344
+ if self.config.pad_token_id is None and batch_size != 1:
1345
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1346
+ if self.config.pad_token_id is None:
1347
+ sequence_lengths = -1
1348
+ else:
1349
+ if input_ids is not None:
1350
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1351
+ logits.device
1352
+ )
1353
+ else:
1354
+ sequence_lengths = -1
1355
+
1356
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1357
+
1358
+ loss = None
1359
+ if labels is not None:
1360
+ labels = labels.to(logits.device)
1361
+ if self.config.problem_type is None:
1362
+ if self.num_labels == 1:
1363
+ self.config.problem_type = "regression"
1364
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1365
+ self.config.problem_type = "single_label_classification"
1366
+ else:
1367
+ self.config.problem_type = "multi_label_classification"
1368
+
1369
+ if self.config.problem_type == "regression":
1370
+ loss_fct = MSELoss()
1371
+ if self.num_labels == 1:
1372
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1373
+ else:
1374
+ loss = loss_fct(pooled_logits, labels)
1375
+ elif self.config.problem_type == "single_label_classification":
1376
+ loss_fct = CrossEntropyLoss()
1377
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1378
+ elif self.config.problem_type == "multi_label_classification":
1379
+ loss_fct = BCEWithLogitsLoss()
1380
+ loss = loss_fct(pooled_logits, labels)
1381
+ if not return_dict:
1382
+ output = (pooled_logits,) + transformer_outputs[1:]
1383
+ return ((loss,) + output) if loss is not None else output
1384
+
1385
+ return SequenceClassifierOutputWithPast(
1386
+ loss=loss,
1387
+ logits=pooled_logits,
1388
+ past_key_values=transformer_outputs.past_key_values,
1389
+ hidden_states=transformer_outputs.hidden_states,
1390
+ attentions=transformer_outputs.attentions,
1391
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization Fast class for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, Optional, Tuple
22
+
23
+ from tokenizers import processors, decoders, Tokenizer, normalizers
24
+ from tokenizers.models import BPE
25
+
26
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
27
+ from transformers.utils import logging
28
+
29
+ from transformers.convert_slow_tokenizer import (
30
+ SLOW_TO_FAST_CONVERTERS,
31
+ SpmConverter,
32
+ SentencePieceExtractor,
33
+ )
34
+
35
+ from .tokenization_internlm2 import InternLM2Tokenizer
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
40
+
41
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
42
+ class InternLM2Converter(SpmConverter):
43
+ handle_byte_fallback = True
44
+
45
+ def vocab(self, proto):
46
+ vocab = [
47
+ ("<unk>", 0.0),
48
+ ("<s>", 0.0),
49
+ ("</s>", 0.0),
50
+ ]
51
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
52
+ return vocab
53
+
54
+ def unk_id(self, proto):
55
+ unk_id = 0
56
+ return unk_id
57
+
58
+ def decoder(self, replacement, add_prefix_space):
59
+ return decoders.Sequence(
60
+ [
61
+ decoders.Replace("▁", " "),
62
+ decoders.ByteFallback(),
63
+ decoders.Fuse(),
64
+ decoders.Strip(content=" ", left=1),
65
+ ]
66
+ )
67
+
68
+ def tokenizer(self, proto):
69
+ model_type = proto.trainer_spec.model_type
70
+ vocab_scores = self.vocab(proto)
71
+ # special tokens
72
+ added_tokens = self.original_tokenizer.added_tokens_decoder
73
+ for i in range(len(vocab_scores)):
74
+ piece, score = vocab_scores[i]
75
+ if i in added_tokens:
76
+ vocab_scores[i] = (added_tokens[i].content, score)
77
+ if model_type == 1:
78
+ raise RuntimeError("InternLM2 is supposed to be a BPE model!")
79
+
80
+ elif model_type == 2:
81
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
82
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
83
+ tokenizer = Tokenizer(
84
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
85
+ )
86
+ tokenizer.add_special_tokens(
87
+ [ added_token for index, added_token in added_tokens.items()]
88
+ )
89
+ else:
90
+ raise Exception(
91
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
92
+ )
93
+
94
+ return tokenizer
95
+
96
+ def normalizer(self, proto):
97
+ normalizers_list = []
98
+ if proto.normalizer_spec.add_dummy_prefix:
99
+ normalizers_list.append(normalizers.Prepend(prepend="▁"))
100
+ normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
101
+ return normalizers.Sequence(normalizers_list)
102
+
103
+ def pre_tokenizer(self, replacement, add_prefix_space):
104
+ return None
105
+
106
+ SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
107
+
108
+
109
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
110
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
111
+ vocab_files_names = VOCAB_FILES_NAMES
112
+ slow_tokenizer_class = InternLM2Tokenizer
113
+ padding_side = "left"
114
+ model_input_names = ["input_ids", "attention_mask"]
115
+ _auto_class = "AutoTokenizer"
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_file,
120
+ unk_token="<unk>",
121
+ bos_token="<s>",
122
+ eos_token="</s>",
123
+ pad_token="</s>",
124
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
125
+ add_bos_token=True,
126
+ add_eos_token=False,
127
+ decode_with_prefix_space=False,
128
+ clean_up_tokenization_spaces=False,
129
+ **kwargs,
130
+ ):
131
+ super().__init__(
132
+ vocab_file=vocab_file,
133
+ unk_token=unk_token,
134
+ bos_token=bos_token,
135
+ eos_token=eos_token,
136
+ pad_token=pad_token,
137
+ sp_model_kwargs=sp_model_kwargs,
138
+ add_bos_token=add_bos_token,
139
+ add_eos_token=add_eos_token,
140
+ decode_with_prefix_space=decode_with_prefix_space,
141
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
142
+ **kwargs,
143
+ )
144
+ self._add_bos_token = add_bos_token
145
+ self._add_eos_token = add_eos_token
146
+ self.update_post_processor()
147
+ self.vocab_file = vocab_file
148
+
149
+ @property
150
+ def can_save_slow_tokenizer(self) -> bool:
151
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
152
+
153
+ def update_post_processor(self):
154
+ """
155
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
156
+ """
157
+ bos = self.bos_token
158
+ bos_token_id = self.bos_token_id
159
+ if bos is None and self.add_bos_token:
160
+ raise ValueError("add_bos_token = True but bos_token = None")
161
+
162
+ eos = self.eos_token
163
+ eos_token_id = self.eos_token_id
164
+ if eos is None and self.add_eos_token:
165
+ raise ValueError("add_eos_token = True but eos_token = None")
166
+
167
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
168
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
169
+
170
+ special_tokens = []
171
+ if self.add_bos_token:
172
+ special_tokens.append((bos, bos_token_id))
173
+ if self.add_eos_token:
174
+ special_tokens.append((eos, eos_token_id))
175
+ self._tokenizer.post_processor = processors.TemplateProcessing(
176
+ single=single, pair=pair, special_tokens=special_tokens
177
+ )
178
+
179
+ @property
180
+ def add_eos_token(self):
181
+ return self._add_eos_token
182
+
183
+ @property
184
+ def add_bos_token(self):
185
+ return self._add_bos_token
186
+
187
+ @add_eos_token.setter
188
+ def add_eos_token(self, value):
189
+ self._add_eos_token = value
190
+ self.update_post_processor()
191
+
192
+ @add_bos_token.setter
193
+ def add_bos_token(self, value):
194
+ self._add_bos_token = value
195
+ self.update_post_processor()
196
+
197
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
198
+ if not self.can_save_slow_tokenizer:
199
+ raise ValueError(
200
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
201
+ "tokenizer."
202
+ )
203
+
204
+ if not os.path.isdir(save_directory):
205
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
206
+ return
207
+ out_vocab_file = os.path.join(
208
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
209
+ )
210
+
211
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
212
+ copyfile(self.vocab_file, out_vocab_file)
213
+
214
+ return (out_vocab_file,)
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "92544": {
30
+ "content": "<|im_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": false
36
+ },
37
+ "92545": {
38
+ "content": "<|im_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "92546": {
46
+ "content": "<|special_0|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "92547": {
54
+ "content": "<|special_1|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "92548": {
62
+ "content": "<|special_2|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "92549": {
70
+ "content": "<|special_3|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "92550": {
78
+ "content": "<|special_4|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "92551": {
86
+ "content": "<|special_5|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "92552": {
94
+ "content": "<|special_6|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "92553": {
102
+ "content": "<|special_7|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "92554": {
110
+ "content": "<|special_8|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "92555": {
118
+ "content": "<|special_9|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "92556": {
126
+ "content": "<|special_10|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "92557": {
134
+ "content": "<|special_11|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "92558": {
142
+ "content": "<|special_12|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "92559": {
150
+ "content": "<|special_13|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "92560": {
158
+ "content": "<|special_14|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "92561": {
166
+ "content": "<|special_15|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "92562": {
174
+ "content": "<|special_16|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "92563": {
182
+ "content": "<|special_17|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "92564": {
190
+ "content": "<|special_18|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "92565": {
198
+ "content": "<|special_19|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "92566": {
206
+ "content": "<|special_20|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "92567": {
214
+ "content": "<|special_21|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "92568": {
222
+ "content": "<|special_22|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "92569": {
230
+ "content": "<|special_23|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "92570": {
238
+ "content": "<|special_24|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "92571": {
246
+ "content": "<|special_25|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "92572": {
254
+ "content": "<|special_26|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "92573": {
262
+ "content": "<|special_27|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "92574": {
270
+ "content": "<|special_28|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "92575": {
278
+ "content": "<|special_29|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "92576": {
286
+ "content": "<|special_30|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "92577": {
294
+ "content": "<|special_31|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "92578": {
302
+ "content": "<|special_32|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "92579": {
310
+ "content": "<|special_33|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "92580": {
318
+ "content": "<|special_34|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "92581": {
326
+ "content": "<|special_35|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "92582": {
334
+ "content": "<|special_36|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "92583": {
342
+ "content": "<|special_37|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "92584": {
350
+ "content": "<|special_38|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "92585": {
358
+ "content": "<|special_39|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "92586": {
366
+ "content": "<|special_40|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "92587": {
374
+ "content": "<|special_41|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "92588": {
382
+ "content": "<|special_42|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "92589": {
390
+ "content": "<|special_43|>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "92590": {
398
+ "content": "<|special_44|>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "92591": {
406
+ "content": "<|special_45|>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "92592": {
414
+ "content": "<|special_46|>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "92593": {
422
+ "content": "<|special_47|>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "92594": {
430
+ "content": "<|special_48|>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "92595": {
438
+ "content": "<|special_49|>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "92596": {
446
+ "content": "<|special_50|>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "92597": {
454
+ "content": "<|special_51|>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "92598": {
462
+ "content": "<|special_52|>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "92599": {
470
+ "content": "<|special_53|>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "92600": {
478
+ "content": "<|special_54|>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "92601": {
486
+ "content": "<|special_55|>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "92602": {
494
+ "content": "<|special_56|>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "92603": {
502
+ "content": "<|special_57|>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "92604": {
510
+ "content": "<|special_58|>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "92605": {
518
+ "content": "<|special_59|>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "92606": {
526
+ "content": "<|special_60|>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "92607": {
534
+ "content": "<|special_61|>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ }
541
+ },
542
+ "auto_map": {
543
+ "AutoTokenizer": [
544
+ "tokenization_internlm2.InternLM2Tokenizer",
545
+ "tokenization_internlm2_fast.InternLM2TokenizerFast"
546
+ ]
547
+ },
548
+ "bos_token": "<s>",
549
+ "clean_up_tokenization_spaces": false,
550
+ "decode_with_prefix_space": false,
551
+ "eos_token": "</s>",
552
+ "model_max_length": 1000000000000000019884624838656,
553
+ "pad_token": "</s>",
554
+ "sp_model_kwargs": null,
555
+ "tokenizer_class": "InternLM2Tokenizer",
556
+ "unk_token": "<unk>",
557
+ "use_default_system_prompt": false,
558
+ "chat_template": "{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx == 0 -%}\n{{- bos_token + '[INST] <<SYS>>\\nYou are a helpful, unbiased, uncensored assistant.\\n<</SYS>>\\n\\n' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}"
559
+ }