jonathanvsv commited on
Commit
0e3bfd3
verified
1 Parent(s): c3fa1ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -20
README.md CHANGED
@@ -1,21 +1,22 @@
1
- ---
2
- license: mit
3
- language:
4
- - en
5
- metrics:
6
- - f1
7
- - accuracy
8
- tags:
9
- - unet
10
- - fusion
11
- - SAR
12
- - multispectral
13
- - LULC
14
- - environment
15
- ---
16
-
17
- This is the model presented as the best-performing model to perform a land use land cover (LULC) classification based on multispectral and SAR data in the following article: Sol贸rzano et al. 2021. Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery. Remote Sensing, 13, 3600. [https://doi.org/10.3390/rs13183600](https://doi.org/10.3390/rs13183600). The additional Github repository containing the code to obtain this model can be found in: [https://github.com/JonathanVSV/U-netR](https://github.com/JonathanVSV/U-netR).
18
-
19
- The U-net architecture:
20
-
 
21
  ![unet2d.jpg](imgs/unet2d.jpg)
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - f1
7
+ - accuracy
8
+ tags:
9
+ - unet
10
+ - fusion
11
+ - SAR
12
+ - multispectral
13
+ - LULC
14
+ - environment
15
+ pipeline_tag: image-classification
16
+ ---
17
+
18
+ This is the model presented as the best-performing model to perform a land use land cover (LULC) classification based on multispectral and SAR data in the following article: Sol贸rzano et al. 2021. Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery. Remote Sensing, 13, 3600. [https://doi.org/10.3390/rs13183600](https://doi.org/10.3390/rs13183600). The additional Github repository containing the code to obtain this model can be found in: [https://github.com/JonathanVSV/U-netR](https://github.com/JonathanVSV/U-netR).
19
+
20
+ The U-net architecture:
21
+
22
  ![unet2d.jpg](imgs/unet2d.jpg)