jonathanjordan21
commited on
Commit
•
9adf831
1
Parent(s):
4aa8273
Update modeling_mos_mamba.py
Browse files- modeling_mos_mamba.py +995 -983
modeling_mos_mamba.py
CHANGED
@@ -1,984 +1,996 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""PyTorch MAMBA model."""
|
16 |
-
|
17 |
-
import math
|
18 |
-
from dataclasses import dataclass
|
19 |
-
from typing import Any, Dict, Optional, Tuple, Union
|
20 |
-
|
21 |
-
import torch
|
22 |
-
import torch.utils.checkpoint
|
23 |
-
from torch import nn
|
24 |
-
from torch.nn import CrossEntropyLoss
|
25 |
-
|
26 |
-
from transformers.activations import ACT2FN
|
27 |
-
from transformers.modeling_utils import PreTrainedModel
|
28 |
-
from transformers.utils import ModelOutput
|
29 |
-
from transformers.utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available
|
30 |
-
from .configuration_mos_mamba import MoSMambaConfig
|
31 |
-
|
32 |
-
import torch.nn.functional as F
|
33 |
-
|
34 |
-
|
35 |
-
if is_mamba_ssm_available():
|
36 |
-
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
|
37 |
-
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
38 |
-
else:
|
39 |
-
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
40 |
-
|
41 |
-
if is_causal_conv1d_available():
|
42 |
-
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
43 |
-
else:
|
44 |
-
causal_conv1d_update, causal_conv1d_fn = None, None
|
45 |
-
|
46 |
-
is_fast_path_available = all(
|
47 |
-
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
|
48 |
-
)
|
49 |
-
|
50 |
-
_CHECKPOINT_FOR_DOC = "state-spaces/mamba-130m-hf"
|
51 |
-
_CONFIG_FOR_DOC = "MoSMambaConfig"
|
52 |
-
|
53 |
-
|
54 |
-
def load_balancing_loss_func(
|
55 |
-
gate_logits: torch.Tensor, num_selectivities: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
56 |
-
) -> float:
|
57 |
-
r"""
|
58 |
-
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
59 |
-
|
60 |
-
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
61 |
-
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
62 |
-
experts is too unbalanced.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
66 |
-
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
67 |
-
shape [batch_size X sequence_length, num_selectivities].
|
68 |
-
attention_mask (`torch.Tensor`, None):
|
69 |
-
The attention_mask used in forward function
|
70 |
-
shape [batch_size X sequence_length] if not None.
|
71 |
-
num_selectivities (`int`, *optional*):
|
72 |
-
Number of experts
|
73 |
-
|
74 |
-
Returns:
|
75 |
-
The auxiliary loss.
|
76 |
-
"""
|
77 |
-
if gate_logits is None or not isinstance(gate_logits, tuple):
|
78 |
-
return 0
|
79 |
-
|
80 |
-
if isinstance(gate_logits, tuple):
|
81 |
-
compute_device = gate_logits[0].device
|
82 |
-
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
83 |
-
|
84 |
-
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
85 |
-
|
86 |
-
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
87 |
-
|
88 |
-
expert_mask = torch.nn.functional.one_hot(selected_experts, num_selectivities)
|
89 |
-
|
90 |
-
if attention_mask is None:
|
91 |
-
# Compute the percentage of tokens routed to each experts
|
92 |
-
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
93 |
-
|
94 |
-
# Compute the average probability of routing to these experts
|
95 |
-
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
96 |
-
else:
|
97 |
-
batch_size, sequence_length = attention_mask.shape
|
98 |
-
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
99 |
-
|
100 |
-
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
101 |
-
expert_attention_mask = (
|
102 |
-
attention_mask[None, :, :, None, None]
|
103 |
-
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_selectivities))
|
104 |
-
.reshape(-1, top_k, num_selectivities)
|
105 |
-
.to(compute_device)
|
106 |
-
)
|
107 |
-
|
108 |
-
# Compute the percentage of tokens routed to each experts
|
109 |
-
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
110 |
-
expert_attention_mask, dim=0
|
111 |
-
)
|
112 |
-
|
113 |
-
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
114 |
-
router_per_expert_attention_mask = (
|
115 |
-
attention_mask[None, :, :, None]
|
116 |
-
.expand((num_hidden_layers, batch_size, sequence_length, num_selectivities))
|
117 |
-
.reshape(-1, num_selectivities)
|
118 |
-
.to(compute_device)
|
119 |
-
)
|
120 |
-
|
121 |
-
# Compute the average probability of routing to these experts
|
122 |
-
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
123 |
-
router_per_expert_attention_mask, dim=0
|
124 |
-
)
|
125 |
-
|
126 |
-
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
127 |
-
return overall_loss * num_selectivities
|
128 |
-
|
129 |
-
|
130 |
-
class MixtralBlockSparseTop2MLP(nn.Module):
|
131 |
-
def __init__(self, intermediate_size, hidden_size, ssm_size):
|
132 |
-
super().__init__()
|
133 |
-
self.ffn_dim = intermediate_size
|
134 |
-
self.hidden_dim = hidden_size
|
135 |
-
self.ssm_dim = ssm_size
|
136 |
-
|
137 |
-
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
138 |
-
self.w2 = nn.Linear(self.ffn_dim, self.ssm_dim, bias=False)
|
139 |
-
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
140 |
-
self.w4 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
141 |
-
|
142 |
-
self.act_fn = ACT2FN['silu']
|
143 |
-
|
144 |
-
def forward(self, hidden_states):
|
145 |
-
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
146 |
-
current_hidden_states = self.w4(current_hidden_states)
|
147 |
-
|
148 |
-
return current_hidden_states
|
149 |
-
|
150 |
-
class MixtureOfSelectivity(nn.Module):
|
151 |
-
def __init__(self, intermediate_size, ssm_size):
|
152 |
-
super().__init__()
|
153 |
-
self.intermediate_size = intermediate_size
|
154 |
-
self.ssm_dim = ssm_size
|
155 |
-
|
156 |
-
# self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
157 |
-
self.w2 = nn.Linear(self.intermediate_size, self.ssm_dim, bias=False)
|
158 |
-
|
159 |
-
|
160 |
-
def forward(self, hidden_states):
|
161 |
-
# current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
162 |
-
return self.w2(hidden_states)
|
163 |
-
|
164 |
-
class MoSMambaCache:
|
165 |
-
"""
|
166 |
-
Arguments:
|
167 |
-
config: MoSMambaConfig
|
168 |
-
batch_size: int
|
169 |
-
dtype: torch.dtype
|
170 |
-
device: torch.device
|
171 |
-
|
172 |
-
Attributes:
|
173 |
-
seqlen_offset: int
|
174 |
-
dtype: torch.dtype
|
175 |
-
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
|
176 |
-
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
|
177 |
-
"""
|
178 |
-
|
179 |
-
def __init__(
|
180 |
-
self, config: MoSMambaConfig, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
181 |
-
):
|
182 |
-
self.seqlen_offset = 0
|
183 |
-
self.dtype = dtype
|
184 |
-
intermediate_size = config.intermediate_size
|
185 |
-
ssm_state_size = config.state_size
|
186 |
-
conv_kernel_size = config.conv_kernel
|
187 |
-
|
188 |
-
self.conv_states = {
|
189 |
-
i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
|
190 |
-
for i in range(config.num_hidden_layers)
|
191 |
-
}
|
192 |
-
self.ssm_states = {
|
193 |
-
i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
|
194 |
-
for i in range(config.num_hidden_layers)
|
195 |
-
}
|
196 |
-
|
197 |
-
|
198 |
-
class MoSMambaMixer(nn.Module):
|
199 |
-
"""
|
200 |
-
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
201 |
-
A, D are input independent (see MoSMamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
202 |
-
∆, B, C are input-dependent (this is a key difference between MoSMamba and the linear time invariant S4,
|
203 |
-
and is why MoSMamba is called **selective** state spaces)
|
204 |
-
"""
|
205 |
-
|
206 |
-
def __init__(self, config: MoSMambaConfig, layer_idx: int):
|
207 |
-
super().__init__()
|
208 |
-
self.hidden_size = config.hidden_size
|
209 |
-
self.ssm_state_size = config.state_size
|
210 |
-
self.conv_kernel_size = config.conv_kernel
|
211 |
-
self.intermediate_size = config.intermediate_size
|
212 |
-
self.time_step_rank = int(config.time_step_rank)
|
213 |
-
self.layer_idx = layer_idx
|
214 |
-
self.use_conv_bias = config.use_conv_bias
|
215 |
-
self.conv1d = nn.Conv1d(
|
216 |
-
in_channels=self.intermediate_size,
|
217 |
-
out_channels=self.intermediate_size,
|
218 |
-
bias=config.use_conv_bias,
|
219 |
-
kernel_size=config.conv_kernel,
|
220 |
-
groups=self.intermediate_size,
|
221 |
-
padding=config.conv_kernel - 1,
|
222 |
-
)
|
223 |
-
|
224 |
-
self.activation = config.hidden_act
|
225 |
-
self.act = ACT2FN[config.hidden_act]
|
226 |
-
|
227 |
-
# num experts
|
228 |
-
self.num_selectivities = config.num_selectivities
|
229 |
-
|
230 |
-
# num selected experts
|
231 |
-
self.top_k = config.num_selectivities_per_tok
|
232 |
-
|
233 |
-
# projection of the input hidden states
|
234 |
-
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
|
235 |
-
# selective projection used to make dt, B and C input dependant
|
236 |
-
# self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False
|
237 |
-
|
238 |
-
# self.x_proj = nn.ModuleList([nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) for _ in range(self.num_selectivities)])
|
239 |
-
# for i in range(self.num_selectivities):
|
240 |
-
# self.x_proj.add_module("x_proj_"+str(i), nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False))
|
241 |
-
|
242 |
-
# self.x_proj_0 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
243 |
-
# self.x_proj_1 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
244 |
-
# self.x_proj_2 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
245 |
-
# self.x_proj_3 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
246 |
-
# self.x_proj_4 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
247 |
-
# self.x_proj_5 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
248 |
-
|
249 |
-
|
250 |
-
# self.x_proj2 = nn.ModuleList([MixtralBlockSparseTop2MLP(self.intermediate_size,self.hidden_size, self.time_step_rank + self.ssm_state_size * 2) for _ in range(self.num_selectivities)])
|
251 |
-
self.x_proj = nn.ModuleList()
|
252 |
-
for i in range(self.num_selectivities):
|
253 |
-
self.x_proj.add_module(f"w{i}",nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False))
|
254 |
-
|
255 |
-
self.gate = nn.Linear(self.hidden_size, self.num_selectivities, bias=False)
|
256 |
-
|
257 |
-
# time step projection (discretization)
|
258 |
-
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
259 |
-
|
260 |
-
# S4D real initialization. These are not discretized!
|
261 |
-
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
262 |
-
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
|
263 |
-
A = A.expand(self.intermediate_size, -1).contiguous()
|
264 |
-
|
265 |
-
self.A_log = nn.Parameter(torch.log(A))
|
266 |
-
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
267 |
-
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
268 |
-
self.use_bias = config.use_bias
|
269 |
-
|
270 |
-
self.jitter_noise = 0.001
|
271 |
-
|
272 |
-
self.register_parameter("A_log", self.A_log)
|
273 |
-
self.register_parameter("D", self.D)
|
274 |
-
|
275 |
-
# for i in enumerate(self.x_proj):
|
276 |
-
# self.register_parameter("x_proj_"+str(i), x)
|
277 |
-
|
278 |
-
|
279 |
-
def cuda_kernels_forward(self, hidden_states: torch.Tensor, x_proj, cache_params: Optional[MoSMambaCache] = None):
|
280 |
-
# 1. Gated MLP's linear projection
|
281 |
-
# router_logits =
|
282 |
-
batch_size, seq_len, _ = hidden_states.shape
|
283 |
-
|
284 |
-
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
285 |
-
|
286 |
-
if projected_states.shape[-1] == 0:
|
287 |
-
hidden_states, gate = projected_states.chunk(2, dim=1)
|
288 |
-
dtype = hidden_states.dtype
|
289 |
-
|
290 |
-
if cache_params is not None:
|
291 |
-
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
292 |
-
if cache_params.seqlen_offset > 0:
|
293 |
-
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
294 |
-
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
295 |
-
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
296 |
-
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
297 |
-
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
298 |
-
if self.use_conv_bias:
|
299 |
-
hidden_states += self.conv1d.bias
|
300 |
-
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
|
301 |
-
else:
|
302 |
-
conv_state = nn.functional.pad(
|
303 |
-
hidden_states,
|
304 |
-
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
305 |
-
)
|
306 |
-
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
307 |
-
if hidden_states.shape[-1] == 0:
|
308 |
-
hidden_states = hidden_states.permute(2,1,0)
|
309 |
-
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
310 |
-
else:
|
311 |
-
ssm_state = torch.zeros(
|
312 |
-
(batch_size, self.intermediate_size, self.ssm_state_size),
|
313 |
-
device=hidden_states.device, dtype=dtype
|
314 |
-
)
|
315 |
-
# print(hidden_states.shape)
|
316 |
-
# print(self.conv1d)
|
317 |
-
if hidden_states.shape[-1] == 0:
|
318 |
-
hidden_states = hidden_states.permute(2,1,0)
|
319 |
-
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
320 |
-
|
321 |
-
scan_output = (hidden_states * self.D[None, :, None])
|
322 |
-
scan_output = (scan_output * self.act(gate))
|
323 |
-
if cache_params is not None:
|
324 |
-
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
325 |
-
|
326 |
-
# 4. Final linear projection
|
327 |
-
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
328 |
-
return contextualized_states
|
329 |
-
|
330 |
-
elif self.training and cache_params is None: # Doesn't support outputting the states -> used for training
|
331 |
-
contextualized_states = mamba_inner_fn(
|
332 |
-
projected_states,
|
333 |
-
self.conv1d.weight,
|
334 |
-
self.conv1d.bias if self.use_conv_bias else None,
|
335 |
-
x_proj.weight,
|
336 |
-
self.dt_proj.weight,
|
337 |
-
self.out_proj.weight,
|
338 |
-
self.out_proj.bias.float() if self.use_bias else None,
|
339 |
-
-torch.exp(self.A_log.float()),
|
340 |
-
None, # input-dependent B
|
341 |
-
None, # input-dependent C
|
342 |
-
self.D.float(),
|
343 |
-
delta_bias=self.dt_proj.bias.float(),
|
344 |
-
delta_softplus=True,
|
345 |
-
)
|
346 |
-
|
347 |
-
else:
|
348 |
-
hidden_states, gate = projected_states.chunk(2, dim=1)
|
349 |
-
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
350 |
-
|
351 |
-
# print("NON ZERO", hidden_states.shape)
|
352 |
-
# 2. Convolution sequence transformation
|
353 |
-
if cache_params is not None and cache_params.seqlen_offset > 0:
|
354 |
-
hidden_states = causal_conv1d_update(
|
355 |
-
hidden_states.squeeze(-1),
|
356 |
-
cache_params.conv_states[self.layer_idx],
|
357 |
-
conv_weights,
|
358 |
-
self.conv1d.bias,
|
359 |
-
self.activation,
|
360 |
-
)
|
361 |
-
hidden_states = hidden_states.unsqueeze(-1)
|
362 |
-
else:
|
363 |
-
if cache_params is not None:
|
364 |
-
conv_states = nn.functional.pad(
|
365 |
-
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
|
366 |
-
)
|
367 |
-
# print(conv_states)
|
368 |
-
cache_params.conv_states[self.layer_idx].copy_(conv_states)
|
369 |
-
|
370 |
-
hidden_states = causal_conv1d_fn(
|
371 |
-
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
|
372 |
-
)
|
373 |
-
# 3. State Space Model sequence transformation
|
374 |
-
# 3.a. input varying initialization of time_step, B and C
|
375 |
-
ssm_parameters = x_proj(hidden_states.transpose(1, 2))
|
376 |
-
time_step, B, C = torch.split(
|
377 |
-
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
378 |
-
)
|
379 |
-
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
|
380 |
-
|
381 |
-
A = -torch.exp(self.A_log.float())
|
382 |
-
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
383 |
-
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
|
384 |
-
|
385 |
-
if cache_params is not None and cache_params.seqlen_offset > 0:
|
386 |
-
scan_outputs = selective_state_update(
|
387 |
-
cache_params.ssm_states[self.layer_idx],
|
388 |
-
hidden_states[..., 0],
|
389 |
-
discrete_time_step[..., 0],
|
390 |
-
A,
|
391 |
-
B[:, 0],
|
392 |
-
C[:, 0],
|
393 |
-
self.D,
|
394 |
-
gate[..., 0],
|
395 |
-
time_proj_bias,
|
396 |
-
dt_softplus=True,
|
397 |
-
).unsqueeze(-1)
|
398 |
-
else:
|
399 |
-
# print("A.shape",A.shape)
|
400 |
-
# print("hidden_states", hidden_states.shape)
|
401 |
-
# print("discrete_time_step", discrete_time_step.shape)
|
402 |
-
# print("GATE.SHAOE", gate.shape)
|
403 |
-
|
404 |
-
scan_outputs, ssm_state = selective_scan_fn(
|
405 |
-
hidden_states,
|
406 |
-
discrete_time_step,
|
407 |
-
A,
|
408 |
-
B.transpose(1, 2),
|
409 |
-
C.transpose(1, 2),
|
410 |
-
self.D.float(),
|
411 |
-
gate,
|
412 |
-
time_proj_bias,
|
413 |
-
delta_softplus=True,
|
414 |
-
return_last_state=True,
|
415 |
-
)
|
416 |
-
# print("SCANOUTPUTS | SSMSTATE", scan_outputs.shape, ssm_state.shape)
|
417 |
-
if ssm_state is not None and cache_params is not None:
|
418 |
-
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
419 |
-
|
420 |
-
# 4. Final linear projection
|
421 |
-
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
422 |
-
return contextualized_states
|
423 |
-
|
424 |
-
# fmt: off
|
425 |
-
def slow_forward(self, input_states, x_proj, cache_params: Optional[MoSMambaCache]=None):
|
426 |
-
batch_size, seq_len, _ = input_states.shape
|
427 |
-
dtype = input_states.dtype
|
428 |
-
# 1. Gated MLP's linear projection
|
429 |
-
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
|
430 |
-
hidden_states, gate = projected_states.chunk(2, dim=1)
|
431 |
-
|
432 |
-
# 2. Convolution sequence transformation
|
433 |
-
if cache_params is not None:
|
434 |
-
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
435 |
-
if cache_params.seqlen_offset > 0:
|
436 |
-
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
437 |
-
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
438 |
-
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
439 |
-
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
440 |
-
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
441 |
-
if self.use_conv_bias:
|
442 |
-
hidden_states += self.conv1d.bias
|
443 |
-
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
|
444 |
-
else:
|
445 |
-
conv_state = nn.functional.pad(
|
446 |
-
hidden_states,
|
447 |
-
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
448 |
-
)
|
449 |
-
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
450 |
-
if hidden_states.shape[-1] == 0:
|
451 |
-
hidden_states = hidden_states.permute(2,1,0)
|
452 |
-
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
453 |
-
else:
|
454 |
-
ssm_state = torch.zeros(
|
455 |
-
(batch_size, self.intermediate_size, self.ssm_state_size),
|
456 |
-
device=hidden_states.device, dtype=dtype
|
457 |
-
)
|
458 |
-
# print(hidden_states.shape)
|
459 |
-
# print(self.conv1d)
|
460 |
-
if hidden_states.shape[-1] == 0:
|
461 |
-
hidden_states = hidden_states.permute(2,1,0)
|
462 |
-
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
463 |
-
|
464 |
-
# 3. State Space Model sequence transformation
|
465 |
-
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
|
466 |
-
ssm_parameters = x_proj(hidden_states.transpose(1, 2))
|
467 |
-
time_step, B, C = torch.split(
|
468 |
-
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
469 |
-
)
|
470 |
-
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
|
471 |
-
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
|
472 |
-
|
473 |
-
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
|
474 |
-
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
|
475 |
-
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
|
476 |
-
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size]
|
477 |
-
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
|
478 |
-
|
479 |
-
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
480 |
-
scan_outputs = []
|
481 |
-
for i in range(seq_len):
|
482 |
-
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state]
|
483 |
-
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1]
|
484 |
-
scan_outputs.append(scan_output[:, :, 0])
|
485 |
-
# print(scan_outputs)
|
486 |
-
scan_output = torch.stack(scan_outputs, dim=-1) if scan_outputs else torch.tensor(scan_outputs) # [batch, seq_len, intermediade_size]
|
487 |
-
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
488 |
-
scan_output = (scan_output * self.act(gate))
|
489 |
-
|
490 |
-
if cache_params is not None:
|
491 |
-
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
492 |
-
|
493 |
-
# 4. Final linear projection
|
494 |
-
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
495 |
-
return contextualized_states
|
496 |
-
|
497 |
-
def forward(self, hidden_states, cache_params: Optional[MoSMambaCache] = None):
|
498 |
-
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
499 |
-
|
500 |
-
if self.training and self.jitter_noise > 0:
|
501 |
-
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
502 |
-
|
503 |
-
# print('BATCH_SIZE | SEQ LENGTH | HID DIM:',batch_size, sequence_length, hidden_dim)
|
504 |
-
|
505 |
-
hidden_states = hidden_states.view(-1, hidden_dim)
|
506 |
-
|
507 |
-
router_logits = self.gate(hidden_states)
|
508 |
-
|
509 |
-
# print("ROUTER LOGITS:", router_logits, router_logits.size())
|
510 |
-
|
511 |
-
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
512 |
-
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
513 |
-
# print("ROUTING WEIGHTS", routing_weights, routing_weights.shape)
|
514 |
-
# print("SEL EXPERTS", selected_experts, selected_experts.shape)
|
515 |
-
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
516 |
-
# we cast back to the input dtype
|
517 |
-
routing_weights = routing_weights.to(hidden_states.dtype)
|
518 |
-
|
519 |
-
# print(routing_weights .shape)
|
520 |
-
|
521 |
-
final_hidden_states = torch.zeros(
|
522 |
-
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
523 |
-
)
|
524 |
-
|
525 |
-
# One hot encode the selected experts to create an expert mask
|
526 |
-
# this will be used to easily index which expert is going to be sollicitated
|
527 |
-
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_selectivities).permute(2, 1, 0)
|
528 |
-
# print("EXPERT MASK", expert_mask, expert_mask.shape)
|
529 |
-
|
530 |
-
# Loop over all available experts in the model and perform the computation on each expert
|
531 |
-
for expert_idx in range(self.num_selectivities):
|
532 |
-
# expert_layer = self.x_proj[expert_idx]
|
533 |
-
expert_layer = self.x_proj.get_submodule(f"w{expert_idx}")
|
534 |
-
# expert_layer = getattr(self, f'x_proj_{expert_idx}')
|
535 |
-
idx, top_x = torch.where(expert_mask[expert_idx])
|
536 |
-
# print("expert_mask[expert_idx]:",expert_mask[expert_idx], expert_mask[expert_idx].shape)
|
537 |
-
|
538 |
-
|
539 |
-
# Index the correct hidden states and compute the expert hidden state for
|
540 |
-
# the current expert. We need to make sure to multiply the output hidden
|
541 |
-
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
542 |
-
# print("TOP_x:",top_x)
|
543 |
-
# print("TOP X.SHAPE:",top_x.shape)
|
544 |
-
# print("HIDDEN STATES.SHAPE:",hidden_states.shape)
|
545 |
-
# print("HIDDEN STATES[NONE, TOPX].SHAPE:", hidden_states[None, top_x].shape)
|
546 |
-
|
547 |
-
|
548 |
-
# print("TOP_X | IDX", top_x, idx)
|
549 |
-
|
550 |
-
current_state = hidden_states[None, top_x]
|
551 |
-
# print("TOPX", top_x,top_x.shape)
|
552 |
-
# print("CURRENT_STATE",current_state.shape)
|
553 |
-
current_state = current_state.reshape(-1, hidden_dim)#.reshape(batch_size, sequence_length, hidden_dim )
|
554 |
-
|
555 |
-
# if current_state.shape[1] == 0:
|
556 |
-
# continue
|
557 |
-
|
558 |
-
|
559 |
-
# print("CURRENT_STATE",current_state)
|
560 |
-
|
561 |
-
# current_state = hidden_states.reshape(batch_size, sequence_length, hidden_dim )
|
562 |
-
|
563 |
-
# print(current_state.shape)
|
564 |
-
# if current_state.shape[0] < 1:
|
565 |
-
# print(current_state)
|
566 |
-
# current_state = current_state.reshape(batch_size, 1, hidden_dim)
|
567 |
-
# else:
|
568 |
-
# current_state = current_state.reshape(batch_size, sequence_length, hidden_dim)
|
569 |
-
|
570 |
-
# print("current_state.shape", current_state.shape, "ROUTING WEIGHTS",routing_weights[top_x, idx, None].shape)
|
571 |
-
|
572 |
-
current_state = current_state * routing_weights[top_x, idx, None]
|
573 |
-
|
574 |
-
# print("current_hidden_states.shape", current_state.shape)
|
575 |
-
|
576 |
-
current_hidden_states = current_state[None]
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
# print("current_hidden_states[none].shape", current_hidden_states.shape)
|
582 |
-
|
583 |
-
if current_hidden_states.shape[1] != 0:
|
584 |
-
|
585 |
-
if is_fast_path_available and "cuda" in expert_layer.weight.device.type:
|
586 |
-
# if is_fast_path_available and "cuda" in expert_layer.w2.weight.device.type:
|
587 |
-
current_hidden_states = self.cuda_kernels_forward(current_hidden_states, expert_layer, cache_params) * routing_weights[top_x, idx, None]
|
588 |
-
else:
|
589 |
-
current_hidden_states = self.slow_forward(current_hidden_states, expert_layer, cache_params) * routing_weights[top_x, idx, None]
|
590 |
-
# else:
|
591 |
-
# expert_layer.grad = torch.zeros_like(expert_layer.weight)
|
592 |
-
# current_hidden_states = expert_layer(current_state)
|
593 |
-
|
594 |
-
current_hidden_states = current_hidden_states.reshape(-1, hidden_dim)
|
595 |
-
# print(current_hidden_states.shape, final_hidden_states.shape)
|
596 |
-
|
597 |
-
# However `index_add_` only support torch tensors for indexing so we'll use
|
598 |
-
# the `top_x` tensor here.
|
599 |
-
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
600 |
-
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
601 |
-
|
602 |
-
return final_hidden_states, router_logits
|
603 |
-
|
604 |
-
|
605 |
-
class MoSMambaRMSNorm(nn.Module):
|
606 |
-
def __init__(self, hidden_size, eps=1e-6):
|
607 |
-
"""
|
608 |
-
MoSMambaRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
|
609 |
-
"""
|
610 |
-
super().__init__()
|
611 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
612 |
-
self.variance_epsilon = eps
|
613 |
-
|
614 |
-
def forward(self, hidden_states):
|
615 |
-
input_dtype = hidden_states.dtype
|
616 |
-
hidden_states = hidden_states.to(torch.float32)
|
617 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
618 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
619 |
-
return self.weight * hidden_states.to(input_dtype)
|
620 |
-
|
621 |
-
|
622 |
-
class MoSMambaBlock(nn.Module):
|
623 |
-
def __init__(self, config, layer_idx):
|
624 |
-
super().__init__()
|
625 |
-
self.config = config
|
626 |
-
self.layer_idx = layer_idx
|
627 |
-
self.residual_in_fp32 = config.residual_in_fp32
|
628 |
-
self.norm = MoSMambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
629 |
-
self.mixer = MoSMambaMixer(config, layer_idx=layer_idx)
|
630 |
-
|
631 |
-
def forward(self, hidden_states, cache_params: Optional[MoSMambaCache] = None, output_router_logits:Optional[bool] = False):
|
632 |
-
residual = hidden_states
|
633 |
-
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
634 |
-
if self.residual_in_fp32:
|
635 |
-
residual = residual.to(torch.float32)
|
636 |
-
|
637 |
-
hidden_states, router_logits = self.mixer(hidden_states, cache_params=cache_params)
|
638 |
-
hidden_states = residual + hidden_states
|
639 |
-
outputs = (hidden_states,)
|
640 |
-
|
641 |
-
if output_router_logits:
|
642 |
-
outputs += (router_logits,)
|
643 |
-
return outputs
|
644 |
-
|
645 |
-
|
646 |
-
class MoSMambaPreTrainedModel(PreTrainedModel):
|
647 |
-
"""
|
648 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
649 |
-
models.
|
650 |
-
"""
|
651 |
-
|
652 |
-
config_class = MoSMambaConfig
|
653 |
-
base_model_prefix = "backbone"
|
654 |
-
_no_split_modules = ["MoSMambaBlock"]
|
655 |
-
supports_gradient_checkpointing = True
|
656 |
-
|
657 |
-
def
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
module.dt_proj.
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
self.
|
785 |
-
|
786 |
-
def
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
use_cache =
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
self.
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
def
|
885 |
-
self
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
def
|
891 |
-
self
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
)
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
984 |
)
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch MAMBA model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.utils import ModelOutput
|
29 |
+
from transformers.utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available
|
30 |
+
from .configuration_mos_mamba import MoSMambaConfig
|
31 |
+
|
32 |
+
import torch.nn.functional as F
|
33 |
+
|
34 |
+
|
35 |
+
if is_mamba_ssm_available():
|
36 |
+
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
|
37 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
38 |
+
else:
|
39 |
+
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
40 |
+
|
41 |
+
if is_causal_conv1d_available():
|
42 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
43 |
+
else:
|
44 |
+
causal_conv1d_update, causal_conv1d_fn = None, None
|
45 |
+
|
46 |
+
is_fast_path_available = all(
|
47 |
+
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
|
48 |
+
)
|
49 |
+
|
50 |
+
_CHECKPOINT_FOR_DOC = "state-spaces/mamba-130m-hf"
|
51 |
+
_CONFIG_FOR_DOC = "MoSMambaConfig"
|
52 |
+
|
53 |
+
|
54 |
+
def load_balancing_loss_func(
|
55 |
+
gate_logits: torch.Tensor, num_selectivities: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
56 |
+
) -> float:
|
57 |
+
r"""
|
58 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
59 |
+
|
60 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
61 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
62 |
+
experts is too unbalanced.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
66 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
67 |
+
shape [batch_size X sequence_length, num_selectivities].
|
68 |
+
attention_mask (`torch.Tensor`, None):
|
69 |
+
The attention_mask used in forward function
|
70 |
+
shape [batch_size X sequence_length] if not None.
|
71 |
+
num_selectivities (`int`, *optional*):
|
72 |
+
Number of experts
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
The auxiliary loss.
|
76 |
+
"""
|
77 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
78 |
+
return 0
|
79 |
+
|
80 |
+
if isinstance(gate_logits, tuple):
|
81 |
+
compute_device = gate_logits[0].device
|
82 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
83 |
+
|
84 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
85 |
+
|
86 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
87 |
+
|
88 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_selectivities)
|
89 |
+
|
90 |
+
if attention_mask is None:
|
91 |
+
# Compute the percentage of tokens routed to each experts
|
92 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
93 |
+
|
94 |
+
# Compute the average probability of routing to these experts
|
95 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
96 |
+
else:
|
97 |
+
batch_size, sequence_length = attention_mask.shape
|
98 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
99 |
+
|
100 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
101 |
+
expert_attention_mask = (
|
102 |
+
attention_mask[None, :, :, None, None]
|
103 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_selectivities))
|
104 |
+
.reshape(-1, top_k, num_selectivities)
|
105 |
+
.to(compute_device)
|
106 |
+
)
|
107 |
+
|
108 |
+
# Compute the percentage of tokens routed to each experts
|
109 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
110 |
+
expert_attention_mask, dim=0
|
111 |
+
)
|
112 |
+
|
113 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
114 |
+
router_per_expert_attention_mask = (
|
115 |
+
attention_mask[None, :, :, None]
|
116 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_selectivities))
|
117 |
+
.reshape(-1, num_selectivities)
|
118 |
+
.to(compute_device)
|
119 |
+
)
|
120 |
+
|
121 |
+
# Compute the average probability of routing to these experts
|
122 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
123 |
+
router_per_expert_attention_mask, dim=0
|
124 |
+
)
|
125 |
+
|
126 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
127 |
+
return overall_loss * num_selectivities
|
128 |
+
|
129 |
+
|
130 |
+
class MixtralBlockSparseTop2MLP(nn.Module):
|
131 |
+
def __init__(self, intermediate_size, hidden_size, ssm_size):
|
132 |
+
super().__init__()
|
133 |
+
self.ffn_dim = intermediate_size
|
134 |
+
self.hidden_dim = hidden_size
|
135 |
+
self.ssm_dim = ssm_size
|
136 |
+
|
137 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
138 |
+
self.w2 = nn.Linear(self.ffn_dim, self.ssm_dim, bias=False)
|
139 |
+
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
140 |
+
self.w4 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
141 |
+
|
142 |
+
self.act_fn = ACT2FN['silu']
|
143 |
+
|
144 |
+
def forward(self, hidden_states):
|
145 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
146 |
+
current_hidden_states = self.w4(current_hidden_states)
|
147 |
+
|
148 |
+
return current_hidden_states
|
149 |
+
|
150 |
+
class MixtureOfSelectivity(nn.Module):
|
151 |
+
def __init__(self, intermediate_size, ssm_size):
|
152 |
+
super().__init__()
|
153 |
+
self.intermediate_size = intermediate_size
|
154 |
+
self.ssm_dim = ssm_size
|
155 |
+
|
156 |
+
# self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
157 |
+
self.w2 = nn.Linear(self.intermediate_size, self.ssm_dim, bias=False)
|
158 |
+
|
159 |
+
|
160 |
+
def forward(self, hidden_states):
|
161 |
+
# current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
162 |
+
return self.w2(hidden_states)
|
163 |
+
|
164 |
+
class MoSMambaCache:
|
165 |
+
"""
|
166 |
+
Arguments:
|
167 |
+
config: MoSMambaConfig
|
168 |
+
batch_size: int
|
169 |
+
dtype: torch.dtype
|
170 |
+
device: torch.device
|
171 |
+
|
172 |
+
Attributes:
|
173 |
+
seqlen_offset: int
|
174 |
+
dtype: torch.dtype
|
175 |
+
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
|
176 |
+
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self, config: MoSMambaConfig, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
181 |
+
):
|
182 |
+
self.seqlen_offset = 0
|
183 |
+
self.dtype = dtype
|
184 |
+
intermediate_size = config.intermediate_size
|
185 |
+
ssm_state_size = config.state_size
|
186 |
+
conv_kernel_size = config.conv_kernel
|
187 |
+
|
188 |
+
self.conv_states = {
|
189 |
+
i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
|
190 |
+
for i in range(config.num_hidden_layers)
|
191 |
+
}
|
192 |
+
self.ssm_states = {
|
193 |
+
i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
|
194 |
+
for i in range(config.num_hidden_layers)
|
195 |
+
}
|
196 |
+
|
197 |
+
|
198 |
+
class MoSMambaMixer(nn.Module):
|
199 |
+
"""
|
200 |
+
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
201 |
+
A, D are input independent (see MoSMamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
202 |
+
∆, B, C are input-dependent (this is a key difference between MoSMamba and the linear time invariant S4,
|
203 |
+
and is why MoSMamba is called **selective** state spaces)
|
204 |
+
"""
|
205 |
+
|
206 |
+
def __init__(self, config: MoSMambaConfig, layer_idx: int):
|
207 |
+
super().__init__()
|
208 |
+
self.hidden_size = config.hidden_size
|
209 |
+
self.ssm_state_size = config.state_size
|
210 |
+
self.conv_kernel_size = config.conv_kernel
|
211 |
+
self.intermediate_size = config.intermediate_size
|
212 |
+
self.time_step_rank = int(config.time_step_rank)
|
213 |
+
self.layer_idx = layer_idx
|
214 |
+
self.use_conv_bias = config.use_conv_bias
|
215 |
+
self.conv1d = nn.Conv1d(
|
216 |
+
in_channels=self.intermediate_size,
|
217 |
+
out_channels=self.intermediate_size,
|
218 |
+
bias=config.use_conv_bias,
|
219 |
+
kernel_size=config.conv_kernel,
|
220 |
+
groups=self.intermediate_size,
|
221 |
+
padding=config.conv_kernel - 1,
|
222 |
+
)
|
223 |
+
|
224 |
+
self.activation = config.hidden_act
|
225 |
+
self.act = ACT2FN[config.hidden_act]
|
226 |
+
|
227 |
+
# num experts
|
228 |
+
self.num_selectivities = config.num_selectivities
|
229 |
+
|
230 |
+
# num selected experts
|
231 |
+
self.top_k = config.num_selectivities_per_tok
|
232 |
+
|
233 |
+
# projection of the input hidden states
|
234 |
+
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
|
235 |
+
# selective projection used to make dt, B and C input dependant
|
236 |
+
# self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False
|
237 |
+
|
238 |
+
# self.x_proj = nn.ModuleList([nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) for _ in range(self.num_selectivities)])
|
239 |
+
# for i in range(self.num_selectivities):
|
240 |
+
# self.x_proj.add_module("x_proj_"+str(i), nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False))
|
241 |
+
|
242 |
+
# self.x_proj_0 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
243 |
+
# self.x_proj_1 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
244 |
+
# self.x_proj_2 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
245 |
+
# self.x_proj_3 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
246 |
+
# self.x_proj_4 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
247 |
+
# self.x_proj_5 = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
248 |
+
|
249 |
+
|
250 |
+
# self.x_proj2 = nn.ModuleList([MixtralBlockSparseTop2MLP(self.intermediate_size,self.hidden_size, self.time_step_rank + self.ssm_state_size * 2) for _ in range(self.num_selectivities)])
|
251 |
+
self.x_proj = nn.ModuleList()
|
252 |
+
for i in range(self.num_selectivities):
|
253 |
+
self.x_proj.add_module(f"w{i}",nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False))
|
254 |
+
|
255 |
+
self.gate = nn.Linear(self.hidden_size, self.num_selectivities, bias=False)
|
256 |
+
|
257 |
+
# time step projection (discretization)
|
258 |
+
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
259 |
+
|
260 |
+
# S4D real initialization. These are not discretized!
|
261 |
+
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
262 |
+
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
|
263 |
+
A = A.expand(self.intermediate_size, -1).contiguous()
|
264 |
+
|
265 |
+
self.A_log = nn.Parameter(torch.log(A))
|
266 |
+
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
267 |
+
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
268 |
+
self.use_bias = config.use_bias
|
269 |
+
|
270 |
+
self.jitter_noise = 0.001
|
271 |
+
|
272 |
+
self.register_parameter("A_log", self.A_log)
|
273 |
+
self.register_parameter("D", self.D)
|
274 |
+
|
275 |
+
# for i in enumerate(self.x_proj):
|
276 |
+
# self.register_parameter("x_proj_"+str(i), x)
|
277 |
+
|
278 |
+
|
279 |
+
def cuda_kernels_forward(self, hidden_states: torch.Tensor, x_proj, cache_params: Optional[MoSMambaCache] = None):
|
280 |
+
# 1. Gated MLP's linear projection
|
281 |
+
# router_logits =
|
282 |
+
batch_size, seq_len, _ = hidden_states.shape
|
283 |
+
|
284 |
+
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
285 |
+
|
286 |
+
if projected_states.shape[-1] == 0:
|
287 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
288 |
+
dtype = hidden_states.dtype
|
289 |
+
|
290 |
+
if cache_params is not None:
|
291 |
+
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
292 |
+
if cache_params.seqlen_offset > 0:
|
293 |
+
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
294 |
+
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
295 |
+
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
296 |
+
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
297 |
+
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
298 |
+
if self.use_conv_bias:
|
299 |
+
hidden_states += self.conv1d.bias
|
300 |
+
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
|
301 |
+
else:
|
302 |
+
conv_state = nn.functional.pad(
|
303 |
+
hidden_states,
|
304 |
+
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
305 |
+
)
|
306 |
+
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
307 |
+
if hidden_states.shape[-1] == 0:
|
308 |
+
hidden_states = hidden_states.permute(2,1,0)
|
309 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
310 |
+
else:
|
311 |
+
ssm_state = torch.zeros(
|
312 |
+
(batch_size, self.intermediate_size, self.ssm_state_size),
|
313 |
+
device=hidden_states.device, dtype=dtype
|
314 |
+
)
|
315 |
+
# print(hidden_states.shape)
|
316 |
+
# print(self.conv1d)
|
317 |
+
if hidden_states.shape[-1] == 0:
|
318 |
+
hidden_states = hidden_states.permute(2,1,0)
|
319 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
320 |
+
|
321 |
+
scan_output = (hidden_states * self.D[None, :, None])
|
322 |
+
scan_output = (scan_output * self.act(gate))
|
323 |
+
if cache_params is not None:
|
324 |
+
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
325 |
+
|
326 |
+
# 4. Final linear projection
|
327 |
+
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
328 |
+
return contextualized_states
|
329 |
+
|
330 |
+
elif self.training and cache_params is None: # Doesn't support outputting the states -> used for training
|
331 |
+
contextualized_states = mamba_inner_fn(
|
332 |
+
projected_states,
|
333 |
+
self.conv1d.weight,
|
334 |
+
self.conv1d.bias if self.use_conv_bias else None,
|
335 |
+
x_proj.weight,
|
336 |
+
self.dt_proj.weight,
|
337 |
+
self.out_proj.weight,
|
338 |
+
self.out_proj.bias.float() if self.use_bias else None,
|
339 |
+
-torch.exp(self.A_log.float()),
|
340 |
+
None, # input-dependent B
|
341 |
+
None, # input-dependent C
|
342 |
+
self.D.float(),
|
343 |
+
delta_bias=self.dt_proj.bias.float(),
|
344 |
+
delta_softplus=True,
|
345 |
+
)
|
346 |
+
|
347 |
+
else:
|
348 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
349 |
+
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
350 |
+
|
351 |
+
# print("NON ZERO", hidden_states.shape)
|
352 |
+
# 2. Convolution sequence transformation
|
353 |
+
if cache_params is not None and cache_params.seqlen_offset > 0:
|
354 |
+
hidden_states = causal_conv1d_update(
|
355 |
+
hidden_states.squeeze(-1),
|
356 |
+
cache_params.conv_states[self.layer_idx],
|
357 |
+
conv_weights,
|
358 |
+
self.conv1d.bias,
|
359 |
+
self.activation,
|
360 |
+
)
|
361 |
+
hidden_states = hidden_states.unsqueeze(-1)
|
362 |
+
else:
|
363 |
+
if cache_params is not None:
|
364 |
+
conv_states = nn.functional.pad(
|
365 |
+
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
|
366 |
+
)
|
367 |
+
# print(conv_states)
|
368 |
+
cache_params.conv_states[self.layer_idx].copy_(conv_states)
|
369 |
+
|
370 |
+
hidden_states = causal_conv1d_fn(
|
371 |
+
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
|
372 |
+
)
|
373 |
+
# 3. State Space Model sequence transformation
|
374 |
+
# 3.a. input varying initialization of time_step, B and C
|
375 |
+
ssm_parameters = x_proj(hidden_states.transpose(1, 2))
|
376 |
+
time_step, B, C = torch.split(
|
377 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
378 |
+
)
|
379 |
+
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
|
380 |
+
|
381 |
+
A = -torch.exp(self.A_log.float())
|
382 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
383 |
+
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
|
384 |
+
|
385 |
+
if cache_params is not None and cache_params.seqlen_offset > 0:
|
386 |
+
scan_outputs = selective_state_update(
|
387 |
+
cache_params.ssm_states[self.layer_idx],
|
388 |
+
hidden_states[..., 0],
|
389 |
+
discrete_time_step[..., 0],
|
390 |
+
A,
|
391 |
+
B[:, 0],
|
392 |
+
C[:, 0],
|
393 |
+
self.D,
|
394 |
+
gate[..., 0],
|
395 |
+
time_proj_bias,
|
396 |
+
dt_softplus=True,
|
397 |
+
).unsqueeze(-1)
|
398 |
+
else:
|
399 |
+
# print("A.shape",A.shape)
|
400 |
+
# print("hidden_states", hidden_states.shape)
|
401 |
+
# print("discrete_time_step", discrete_time_step.shape)
|
402 |
+
# print("GATE.SHAOE", gate.shape)
|
403 |
+
|
404 |
+
scan_outputs, ssm_state = selective_scan_fn(
|
405 |
+
hidden_states,
|
406 |
+
discrete_time_step,
|
407 |
+
A,
|
408 |
+
B.transpose(1, 2),
|
409 |
+
C.transpose(1, 2),
|
410 |
+
self.D.float(),
|
411 |
+
gate,
|
412 |
+
time_proj_bias,
|
413 |
+
delta_softplus=True,
|
414 |
+
return_last_state=True,
|
415 |
+
)
|
416 |
+
# print("SCANOUTPUTS | SSMSTATE", scan_outputs.shape, ssm_state.shape)
|
417 |
+
if ssm_state is not None and cache_params is not None:
|
418 |
+
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
419 |
+
|
420 |
+
# 4. Final linear projection
|
421 |
+
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
422 |
+
return contextualized_states
|
423 |
+
|
424 |
+
# fmt: off
|
425 |
+
def slow_forward(self, input_states, x_proj, cache_params: Optional[MoSMambaCache]=None):
|
426 |
+
batch_size, seq_len, _ = input_states.shape
|
427 |
+
dtype = input_states.dtype
|
428 |
+
# 1. Gated MLP's linear projection
|
429 |
+
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
|
430 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
431 |
+
|
432 |
+
# 2. Convolution sequence transformation
|
433 |
+
if cache_params is not None:
|
434 |
+
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
435 |
+
if cache_params.seqlen_offset > 0:
|
436 |
+
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
|
437 |
+
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
438 |
+
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
439 |
+
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
440 |
+
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
441 |
+
if self.use_conv_bias:
|
442 |
+
hidden_states += self.conv1d.bias
|
443 |
+
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
|
444 |
+
else:
|
445 |
+
conv_state = nn.functional.pad(
|
446 |
+
hidden_states,
|
447 |
+
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
448 |
+
)
|
449 |
+
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
450 |
+
if hidden_states.shape[-1] == 0:
|
451 |
+
hidden_states = hidden_states.permute(2,1,0)
|
452 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
453 |
+
else:
|
454 |
+
ssm_state = torch.zeros(
|
455 |
+
(batch_size, self.intermediate_size, self.ssm_state_size),
|
456 |
+
device=hidden_states.device, dtype=dtype
|
457 |
+
)
|
458 |
+
# print(hidden_states.shape)
|
459 |
+
# print(self.conv1d)
|
460 |
+
if hidden_states.shape[-1] == 0:
|
461 |
+
hidden_states = hidden_states.permute(2,1,0)
|
462 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
463 |
+
|
464 |
+
# 3. State Space Model sequence transformation
|
465 |
+
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
|
466 |
+
ssm_parameters = x_proj(hidden_states.transpose(1, 2))
|
467 |
+
time_step, B, C = torch.split(
|
468 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
469 |
+
)
|
470 |
+
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
|
471 |
+
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
|
472 |
+
|
473 |
+
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
|
474 |
+
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
|
475 |
+
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
|
476 |
+
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size]
|
477 |
+
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
|
478 |
+
|
479 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
480 |
+
scan_outputs = []
|
481 |
+
for i in range(seq_len):
|
482 |
+
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state]
|
483 |
+
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1]
|
484 |
+
scan_outputs.append(scan_output[:, :, 0])
|
485 |
+
# print(scan_outputs)
|
486 |
+
scan_output = torch.stack(scan_outputs, dim=-1) if scan_outputs else torch.tensor(scan_outputs) # [batch, seq_len, intermediade_size]
|
487 |
+
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
488 |
+
scan_output = (scan_output * self.act(gate))
|
489 |
+
|
490 |
+
if cache_params is not None:
|
491 |
+
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
492 |
+
|
493 |
+
# 4. Final linear projection
|
494 |
+
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
495 |
+
return contextualized_states
|
496 |
+
|
497 |
+
def forward(self, hidden_states, cache_params: Optional[MoSMambaCache] = None):
|
498 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
499 |
+
|
500 |
+
if self.training and self.jitter_noise > 0:
|
501 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
502 |
+
|
503 |
+
# print('BATCH_SIZE | SEQ LENGTH | HID DIM:',batch_size, sequence_length, hidden_dim)
|
504 |
+
|
505 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
506 |
+
|
507 |
+
router_logits = self.gate(hidden_states)
|
508 |
+
|
509 |
+
# print("ROUTER LOGITS:", router_logits, router_logits.size())
|
510 |
+
|
511 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
512 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
513 |
+
# print("ROUTING WEIGHTS", routing_weights, routing_weights.shape)
|
514 |
+
# print("SEL EXPERTS", selected_experts, selected_experts.shape)
|
515 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
516 |
+
# we cast back to the input dtype
|
517 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
518 |
+
|
519 |
+
# print(routing_weights .shape)
|
520 |
+
|
521 |
+
final_hidden_states = torch.zeros(
|
522 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
523 |
+
)
|
524 |
+
|
525 |
+
# One hot encode the selected experts to create an expert mask
|
526 |
+
# this will be used to easily index which expert is going to be sollicitated
|
527 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_selectivities).permute(2, 1, 0)
|
528 |
+
# print("EXPERT MASK", expert_mask, expert_mask.shape)
|
529 |
+
|
530 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
531 |
+
for expert_idx in range(self.num_selectivities):
|
532 |
+
# expert_layer = self.x_proj[expert_idx]
|
533 |
+
expert_layer = self.x_proj.get_submodule(f"w{expert_idx}")
|
534 |
+
# expert_layer = getattr(self, f'x_proj_{expert_idx}')
|
535 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
536 |
+
# print("expert_mask[expert_idx]:",expert_mask[expert_idx], expert_mask[expert_idx].shape)
|
537 |
+
|
538 |
+
|
539 |
+
# Index the correct hidden states and compute the expert hidden state for
|
540 |
+
# the current expert. We need to make sure to multiply the output hidden
|
541 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
542 |
+
# print("TOP_x:",top_x)
|
543 |
+
# print("TOP X.SHAPE:",top_x.shape)
|
544 |
+
# print("HIDDEN STATES.SHAPE:",hidden_states.shape)
|
545 |
+
# print("HIDDEN STATES[NONE, TOPX].SHAPE:", hidden_states[None, top_x].shape)
|
546 |
+
|
547 |
+
|
548 |
+
# print("TOP_X | IDX", top_x, idx)
|
549 |
+
|
550 |
+
current_state = hidden_states[None, top_x]
|
551 |
+
# print("TOPX", top_x,top_x.shape)
|
552 |
+
# print("CURRENT_STATE",current_state.shape)
|
553 |
+
current_state = current_state.reshape(-1, hidden_dim)#.reshape(batch_size, sequence_length, hidden_dim )
|
554 |
+
|
555 |
+
# if current_state.shape[1] == 0:
|
556 |
+
# continue
|
557 |
+
|
558 |
+
|
559 |
+
# print("CURRENT_STATE",current_state)
|
560 |
+
|
561 |
+
# current_state = hidden_states.reshape(batch_size, sequence_length, hidden_dim )
|
562 |
+
|
563 |
+
# print(current_state.shape)
|
564 |
+
# if current_state.shape[0] < 1:
|
565 |
+
# print(current_state)
|
566 |
+
# current_state = current_state.reshape(batch_size, 1, hidden_dim)
|
567 |
+
# else:
|
568 |
+
# current_state = current_state.reshape(batch_size, sequence_length, hidden_dim)
|
569 |
+
|
570 |
+
# print("current_state.shape", current_state.shape, "ROUTING WEIGHTS",routing_weights[top_x, idx, None].shape)
|
571 |
+
|
572 |
+
current_state = current_state * routing_weights[top_x, idx, None]
|
573 |
+
|
574 |
+
# print("current_hidden_states.shape", current_state.shape)
|
575 |
+
|
576 |
+
current_hidden_states = current_state[None]
|
577 |
+
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
# print("current_hidden_states[none].shape", current_hidden_states.shape)
|
582 |
+
|
583 |
+
if current_hidden_states.shape[1] != 0:
|
584 |
+
|
585 |
+
if is_fast_path_available and "cuda" in expert_layer.weight.device.type:
|
586 |
+
# if is_fast_path_available and "cuda" in expert_layer.w2.weight.device.type:
|
587 |
+
current_hidden_states = self.cuda_kernels_forward(current_hidden_states, expert_layer, cache_params) * routing_weights[top_x, idx, None]
|
588 |
+
else:
|
589 |
+
current_hidden_states = self.slow_forward(current_hidden_states, expert_layer, cache_params) * routing_weights[top_x, idx, None]
|
590 |
+
# else:
|
591 |
+
# expert_layer.grad = torch.zeros_like(expert_layer.weight)
|
592 |
+
# current_hidden_states = expert_layer(current_state)
|
593 |
+
|
594 |
+
current_hidden_states = current_hidden_states.reshape(-1, hidden_dim)
|
595 |
+
# print(current_hidden_states.shape, final_hidden_states.shape)
|
596 |
+
|
597 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
598 |
+
# the `top_x` tensor here.
|
599 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
600 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
601 |
+
|
602 |
+
return final_hidden_states, router_logits
|
603 |
+
|
604 |
+
|
605 |
+
class MoSMambaRMSNorm(nn.Module):
|
606 |
+
def __init__(self, hidden_size, eps=1e-6):
|
607 |
+
"""
|
608 |
+
MoSMambaRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
|
609 |
+
"""
|
610 |
+
super().__init__()
|
611 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
612 |
+
self.variance_epsilon = eps
|
613 |
+
|
614 |
+
def forward(self, hidden_states):
|
615 |
+
input_dtype = hidden_states.dtype
|
616 |
+
hidden_states = hidden_states.to(torch.float32)
|
617 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
618 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
619 |
+
return self.weight * hidden_states.to(input_dtype)
|
620 |
+
|
621 |
+
|
622 |
+
class MoSMambaBlock(nn.Module):
|
623 |
+
def __init__(self, config, layer_idx):
|
624 |
+
super().__init__()
|
625 |
+
self.config = config
|
626 |
+
self.layer_idx = layer_idx
|
627 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
628 |
+
self.norm = MoSMambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
629 |
+
self.mixer = MoSMambaMixer(config, layer_idx=layer_idx)
|
630 |
+
|
631 |
+
def forward(self, hidden_states, cache_params: Optional[MoSMambaCache] = None, output_router_logits:Optional[bool] = False):
|
632 |
+
residual = hidden_states
|
633 |
+
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
634 |
+
if self.residual_in_fp32:
|
635 |
+
residual = residual.to(torch.float32)
|
636 |
+
|
637 |
+
hidden_states, router_logits = self.mixer(hidden_states, cache_params=cache_params)
|
638 |
+
hidden_states = residual + hidden_states
|
639 |
+
outputs = (hidden_states,)
|
640 |
+
|
641 |
+
if output_router_logits:
|
642 |
+
outputs += (router_logits,)
|
643 |
+
return outputs
|
644 |
+
|
645 |
+
|
646 |
+
class MoSMambaPreTrainedModel(PreTrainedModel):
|
647 |
+
"""
|
648 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
649 |
+
models.
|
650 |
+
"""
|
651 |
+
|
652 |
+
config_class = MoSMambaConfig
|
653 |
+
base_model_prefix = "backbone"
|
654 |
+
_no_split_modules = ["MoSMambaBlock"]
|
655 |
+
supports_gradient_checkpointing = True
|
656 |
+
|
657 |
+
def make_tensors_contiguous(self):
|
658 |
+
for name, param in self.named_parameters():
|
659 |
+
if not param.is_contiguous():
|
660 |
+
param.data = param.data.contiguous()
|
661 |
+
|
662 |
+
def save_pretrained(self, save_directory, **kwargs):
|
663 |
+
# Make tensors contiguous
|
664 |
+
self.make_tensors_contiguous()
|
665 |
+
|
666 |
+
# Call the original save_pretrained method
|
667 |
+
super().save_pretrained(save_directory, **kwargs)
|
668 |
+
|
669 |
+
def _init_weights(self, module):
|
670 |
+
"""Initialize the weights."""
|
671 |
+
if isinstance(module, MoSMambaMixer):
|
672 |
+
module.A_log._no_weight_decay = True
|
673 |
+
module.D._no_weight_decay = True
|
674 |
+
|
675 |
+
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
|
676 |
+
if self.config.time_step_init_scheme == "constant":
|
677 |
+
nn.init.constant_(module.dt_proj.weight, dt_init_std)
|
678 |
+
elif self.config.time_step_init_scheme == "random":
|
679 |
+
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
|
680 |
+
|
681 |
+
dt = torch.exp(
|
682 |
+
torch.rand(self.config.intermediate_size)
|
683 |
+
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
684 |
+
+ math.log(self.config.time_step_min)
|
685 |
+
).clamp(min=self.config.time_step_floor)
|
686 |
+
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
687 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
688 |
+
with torch.no_grad():
|
689 |
+
module.dt_proj.bias.copy_(inv_dt)
|
690 |
+
module.dt_proj.bias._no_reinit = True
|
691 |
+
|
692 |
+
if isinstance(module, nn.Linear):
|
693 |
+
if module.bias is not None:
|
694 |
+
if not getattr(module.bias, "_no_reinit", False):
|
695 |
+
nn.init.zeros_(module.bias)
|
696 |
+
elif isinstance(module, nn.Embedding):
|
697 |
+
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
698 |
+
|
699 |
+
if self.config.rescale_prenorm_residual:
|
700 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
701 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
702 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
703 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
704 |
+
#
|
705 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
706 |
+
for name, p in module.named_parameters():
|
707 |
+
if name in ["out_proj.weight"]:
|
708 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
709 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
710 |
+
# We need to reinit p since this code could be called multiple times
|
711 |
+
# Having just p *= scale would repeatedly scale it down
|
712 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
713 |
+
with torch.no_grad():
|
714 |
+
p /= math.sqrt(self.config.num_layers)
|
715 |
+
|
716 |
+
|
717 |
+
@dataclass
|
718 |
+
class MoSMambaOutput(ModelOutput):
|
719 |
+
"""
|
720 |
+
Class for the MAMBA model outputs.
|
721 |
+
|
722 |
+
Args:
|
723 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
724 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
725 |
+
cache_params (`MoSMambaCache`):
|
726 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
727 |
+
avoid providing the old `input_ids`.
|
728 |
+
|
729 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
730 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
731 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
732 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
733 |
+
|
734 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
735 |
+
"""
|
736 |
+
|
737 |
+
last_hidden_state: Optional[torch.FloatTensor] = None
|
738 |
+
cache_params: Optional[MoSMambaCache] = None
|
739 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
740 |
+
router_logits: Optional[Tuple[torch.FloatTensor]] = None
|
741 |
+
|
742 |
+
|
743 |
+
@dataclass
|
744 |
+
class MoSMambaCausalLMOutput(ModelOutput):
|
745 |
+
"""
|
746 |
+
Base class for causal language model (or autoregressive) outputs.
|
747 |
+
|
748 |
+
Args:
|
749 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
750 |
+
Language modeling loss (for next-token prediction).
|
751 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
752 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
753 |
+
cache_params (`MoSMambaCache`):
|
754 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
755 |
+
avoid providing the old `input_ids`.
|
756 |
+
|
757 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
758 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
759 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
760 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
761 |
+
|
762 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
763 |
+
"""
|
764 |
+
|
765 |
+
loss: Optional[torch.FloatTensor] = None
|
766 |
+
logits: Optional[torch.FloatTensor] = None
|
767 |
+
cache_params: Optional[MoSMambaCache] = None
|
768 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
769 |
+
router_logits: Optional[Tuple[torch.FloatTensor]] = None
|
770 |
+
|
771 |
+
|
772 |
+
class MoSMambaModel(MoSMambaPreTrainedModel):
|
773 |
+
def __init__(self, config):
|
774 |
+
super().__init__(config)
|
775 |
+
|
776 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
777 |
+
self.layers = nn.ModuleList([MoSMambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
778 |
+
|
779 |
+
self.gradient_checkpointing = False
|
780 |
+
self.norm_f = MoSMambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
781 |
+
# Initialize weights and apply final processing
|
782 |
+
self._register_load_state_dict_pre_hook(self.load_hook)
|
783 |
+
self.post_init()
|
784 |
+
self.config.output_router_logits = True
|
785 |
+
|
786 |
+
def load_hook(self, state_dict, prefix, *args):
|
787 |
+
for k in state_dict:
|
788 |
+
if "embedding." in k:
|
789 |
+
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
790 |
+
break
|
791 |
+
|
792 |
+
def get_input_embeddings(self):
|
793 |
+
return self.embeddings
|
794 |
+
|
795 |
+
def set_input_embeddings(self, new_embeddings):
|
796 |
+
self.embeddings = new_embeddings
|
797 |
+
|
798 |
+
def forward(
|
799 |
+
self,
|
800 |
+
input_ids: Optional[torch.LongTensor] = None,
|
801 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
802 |
+
cache_params: Optional[MoSMambaCache] = None,
|
803 |
+
use_cache: Optional[bool] = None,
|
804 |
+
output_hidden_states: Optional[bool] = None,
|
805 |
+
output_router_logits: Optional[bool] = None,
|
806 |
+
return_dict: Optional[bool] = None,
|
807 |
+
**kwargs, # `attention_mask` is passed by the tokenizer and we don't want it
|
808 |
+
) -> Union[Tuple, MoSMambaOutput]:
|
809 |
+
output_hidden_states = (
|
810 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
811 |
+
)
|
812 |
+
output_router_logits = (
|
813 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
814 |
+
)
|
815 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
816 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
817 |
+
|
818 |
+
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
819 |
+
raise ValueError(
|
820 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
821 |
+
)
|
822 |
+
|
823 |
+
if inputs_embeds is None:
|
824 |
+
inputs_embeds = self.embeddings(input_ids)
|
825 |
+
|
826 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
827 |
+
use_cache = False
|
828 |
+
|
829 |
+
if cache_params is None and use_cache:
|
830 |
+
cache_params = MoSMambaCache(
|
831 |
+
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
832 |
+
)
|
833 |
+
|
834 |
+
hidden_states = inputs_embeds
|
835 |
+
all_hidden_states = () if output_hidden_states else None
|
836 |
+
all_router_logits = () if output_router_logits else None
|
837 |
+
for mixer_block in self.layers:
|
838 |
+
if self.gradient_checkpointing and self.training:
|
839 |
+
layer_outputs = self._gradient_checkpointing_func(mixer_block.__call__, hidden_states, cache_params, output_router_logits)
|
840 |
+
else:
|
841 |
+
layer_outputs = mixer_block(hidden_states, cache_params=cache_params,output_router_logits=output_router_logits)
|
842 |
+
|
843 |
+
hidden_states = layer_outputs[0]
|
844 |
+
|
845 |
+
if output_hidden_states:
|
846 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
847 |
+
|
848 |
+
if output_router_logits:
|
849 |
+
all_router_logits += (layer_outputs[-1],)
|
850 |
+
|
851 |
+
if use_cache:
|
852 |
+
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
853 |
+
|
854 |
+
hidden_states = self.norm_f(hidden_states)
|
855 |
+
|
856 |
+
if output_hidden_states:
|
857 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
858 |
+
|
859 |
+
|
860 |
+
if not return_dict:
|
861 |
+
return tuple(v for v in [hidden_states, cache_params, all_hidden_states, all_router_logits] if v is not None)
|
862 |
+
|
863 |
+
return MoSMambaOutput(
|
864 |
+
last_hidden_state=hidden_states,
|
865 |
+
cache_params=cache_params if use_cache else None,
|
866 |
+
hidden_states=all_hidden_states,
|
867 |
+
router_logits=all_router_logits,
|
868 |
+
)
|
869 |
+
|
870 |
+
|
871 |
+
class MoSMambaForCausalLM(MoSMambaPreTrainedModel):
|
872 |
+
_tied_weights_keys = ["lm_head.weight"]
|
873 |
+
|
874 |
+
def __init__(self, config):
|
875 |
+
super().__init__(config)
|
876 |
+
self.backbone = MoSMambaModel(config)
|
877 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
878 |
+
self.num_selectivities = 6
|
879 |
+
self.num_selectivities_per_tok = 2
|
880 |
+
self.router_aux_loss_coef = 0.02
|
881 |
+
# Initialize weights and apply final processing
|
882 |
+
self.post_init()
|
883 |
+
|
884 |
+
def get_output_embeddings(self):
|
885 |
+
return self.lm_head
|
886 |
+
|
887 |
+
def set_output_embeddings(self, new_embeddings):
|
888 |
+
self.lm_head = new_embeddings
|
889 |
+
|
890 |
+
def get_input_embeddings(self):
|
891 |
+
return self.backbone.get_input_embeddings()
|
892 |
+
|
893 |
+
def set_input_embeddings(self, new_embeddings):
|
894 |
+
return self.backbone.set_input_embeddings(new_embeddings)
|
895 |
+
|
896 |
+
def _update_model_kwargs_for_generation(
|
897 |
+
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], **kwargs
|
898 |
+
) -> Dict[str, Any]:
|
899 |
+
model_kwargs["cache_params"] = outputs.get("cache_params", None)
|
900 |
+
return model_kwargs
|
901 |
+
|
902 |
+
def prepare_inputs_for_generation(
|
903 |
+
self, input_ids, cache_params: Optional[MoSMambaCache] = None, inputs_embeds=None, attention_mask=None, output_router_logits=False, **kwargs
|
904 |
+
):
|
905 |
+
# only last token for inputs_ids if the state is passed along.
|
906 |
+
if cache_params is not None:
|
907 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
908 |
+
|
909 |
+
if inputs_embeds is not None and cache_params is None:
|
910 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
911 |
+
else:
|
912 |
+
model_inputs = {"input_ids": input_ids}
|
913 |
+
|
914 |
+
model_inputs["cache_params"] = cache_params
|
915 |
+
model_inputs['output_router_logits'] = output_router_logits
|
916 |
+
return model_inputs
|
917 |
+
|
918 |
+
|
919 |
+
def forward(
|
920 |
+
self,
|
921 |
+
input_ids: Optional[torch.LongTensor] = None,
|
922 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
923 |
+
cache_params: Optional[MoSMambaCache] = None,
|
924 |
+
labels: Optional[torch.LongTensor] = None,
|
925 |
+
output_hidden_states: Optional[bool] = None,
|
926 |
+
output_router_logits: Optional[bool] = None,
|
927 |
+
return_dict: Optional[bool] = None,
|
928 |
+
use_cache: Optional[bool] = None,
|
929 |
+
**kwargs, # for now we need this for generation
|
930 |
+
) -> Union[Tuple, MoSMambaCausalLMOutput]:
|
931 |
+
r"""
|
932 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
933 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
934 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
935 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
936 |
+
"""
|
937 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
938 |
+
|
939 |
+
output_router_logits = (
|
940 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
941 |
+
)
|
942 |
+
|
943 |
+
mamba_outputs = self.backbone(
|
944 |
+
input_ids,
|
945 |
+
cache_params=cache_params,
|
946 |
+
inputs_embeds=inputs_embeds,
|
947 |
+
output_hidden_states=output_hidden_states,
|
948 |
+
return_dict=return_dict,
|
949 |
+
use_cache=use_cache,
|
950 |
+
)
|
951 |
+
hidden_states = mamba_outputs[0]
|
952 |
+
|
953 |
+
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
954 |
+
|
955 |
+
loss = None
|
956 |
+
if labels is not None:
|
957 |
+
# move labels to correct device to enable model parallelism
|
958 |
+
labels = labels.to(logits.device)
|
959 |
+
# Shift so that tokens < n predict n
|
960 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
961 |
+
shift_labels = labels[..., 1:].contiguous()
|
962 |
+
# Flatten the tokens
|
963 |
+
loss_fct = CrossEntropyLoss()
|
964 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
965 |
+
|
966 |
+
aux_loss = None
|
967 |
+
if output_router_logits:
|
968 |
+
aux_loss = load_balancing_loss_func(
|
969 |
+
mamba_outputs.router_logits if return_dict else mamba_outputs[-1],
|
970 |
+
self.num_selectivities,
|
971 |
+
self.num_selectivities_per_tok,
|
972 |
+
# attention_mask,
|
973 |
+
)
|
974 |
+
if labels is not None:
|
975 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
976 |
+
|
977 |
+
# print("AUX LOSS:", aux_loss)
|
978 |
+
# print("LOSS:", loss)
|
979 |
+
|
980 |
+
if not return_dict:
|
981 |
+
output = (logits,) + mamba_outputs[1:]
|
982 |
+
if output_router_logits:
|
983 |
+
output = (aux_loss,) + output
|
984 |
+
return (loss,) + output if loss is not None else output
|
985 |
+
|
986 |
+
# if not return_dict:
|
987 |
+
# output = (logits,) + mamba_outputs[1:]
|
988 |
+
# return ((loss,) + output) if loss is not None else output
|
989 |
+
|
990 |
+
return MoSMambaCausalLMOutput(
|
991 |
+
loss=loss,
|
992 |
+
logits=logits,
|
993 |
+
cache_params=mamba_outputs.cache_params,
|
994 |
+
hidden_states=mamba_outputs.hidden_states,
|
995 |
+
router_logits=mamba_outputs.router_logits,
|
996 |
)
|