jonathanjordan21 commited on
Commit
5436d80
·
verified ·
1 Parent(s): e65af77

Upload Qwen2NomicVisionForCausalLM

Browse files
config.json CHANGED
@@ -4,6 +4,10 @@
4
  "Qwen2NomicVisionForCausalLM"
5
  ],
6
  "attention_dropout": 0.0,
 
 
 
 
7
  "bos_token_id": 151643,
8
  "eos_token_id": 151645,
9
  "hidden_act": "silu",
 
4
  "Qwen2NomicVisionForCausalLM"
5
  ],
6
  "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen2_nomic_vision.Qwen2NomicVisionConfig",
9
+ "AutoModelForCausalLM": "modeling_qwen2_nomic_vision.Qwen2NomicVisionForCausalLM"
10
+ },
11
  "bos_token_id": 151643,
12
  "eos_token_id": 151645,
13
  "hidden_act": "silu",
configuration_qwen2_nomic_vision.py CHANGED
@@ -1,185 +1,185 @@
1
- # coding=utf-8
2
- # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # """Qwen2 model configuration"""
16
-
17
- from transformers.configuration_utils import PretrainedConfig
18
- from transformers.modeling_rope_utils import rope_config_validation
19
- from transformers.utils import logging
20
-
21
-
22
- # logger = logging.get_logger(__name__)
23
-
24
-
25
- class Qwen2NomicVisionConfig(PretrainedConfig):
26
- r"""
27
- This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
28
- Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
- with the defaults will yield a similar configuration to that of
30
- Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
31
-
32
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
- documentation from [`PretrainedConfig`] for more information.
34
-
35
-
36
- Args:
37
- vocab_size (`int`, *optional*, defaults to 151936):
38
- Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
39
- `inputs_ids` passed when calling [`Qwen2Model`]
40
- hidden_size (`int`, *optional*, defaults to 4096):
41
- Dimension of the hidden representations.
42
- intermediate_size (`int`, *optional*, defaults to 22016):
43
- Dimension of the MLP representations.
44
- num_hidden_layers (`int`, *optional*, defaults to 32):
45
- Number of hidden layers in the Transformer encoder.
46
- num_attention_heads (`int`, *optional*, defaults to 32):
47
- Number of attention heads for each attention layer in the Transformer encoder.
48
- num_key_value_heads (`int`, *optional*, defaults to 32):
49
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
- by meanpooling all the original heads within that group. For more details checkout [this
54
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
55
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
56
- The non-linear activation function (function or string) in the decoder.
57
- max_position_embeddings (`int`, *optional*, defaults to 32768):
58
- The maximum sequence length that this model might ever be used with.
59
- initializer_range (`float`, *optional*, defaults to 0.02):
60
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
62
- The epsilon used by the rms normalization layers.
63
- use_cache (`bool`, *optional*, defaults to `True`):
64
- Whether or not the model should return the last key/values attentions (not used by all models). Only
65
- relevant if `config.is_decoder=True`.
66
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
67
- Whether the model's input and output word embeddings should be tied.
68
- rope_theta (`float`, *optional*, defaults to 10000.0):
69
- The base period of the RoPE embeddings.
70
- rope_scaling (`Dict`, *optional*):
71
- Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
72
- and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
73
- accordingly.
74
- Expected contents:
75
- `rope_type` (`str`):
76
- The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
77
- 'llama3'], with 'default' being the original RoPE implementation.
78
- `factor` (`float`, *optional*):
79
- Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
80
- most scaling types, a `factor` of x will enable the model to handle sequences of length x *
81
- original maximum pre-trained length.
82
- `original_max_position_embeddings` (`int`, *optional*):
83
- Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
84
- pretraining.
85
- `attention_factor` (`float`, *optional*):
86
- Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
87
- computation. If unspecified, it defaults to value recommended by the implementation, using the
88
- `factor` field to infer the suggested value.
89
- `beta_fast` (`float`, *optional*):
90
- Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
91
- ramp function. If unspecified, it defaults to 32.
92
- `beta_slow` (`float`, *optional*):
93
- Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
94
- ramp function. If unspecified, it defaults to 1.
95
- `short_factor` (`List[float]`, *optional*):
96
- Only used with 'longrope'. The scaling factor to be applied to short contexts (<
97
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
98
- size divided by the number of attention heads divided by 2
99
- `long_factor` (`List[float]`, *optional*):
100
- Only used with 'longrope'. The scaling factor to be applied to long contexts (<
101
- `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
102
- size divided by the number of attention heads divided by 2
103
- `low_freq_factor` (`float`, *optional*):
104
- Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
105
- `high_freq_factor` (`float`, *optional*):
106
- Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
107
- use_sliding_window (`bool`, *optional*, defaults to `False`):
108
- Whether to use sliding window attention.
109
- sliding_window (`int`, *optional*, defaults to 4096):
110
- Sliding window attention (SWA) window size. If not specified, will default to `4096`.
111
- max_window_layers (`int`, *optional*, defaults to 28):
112
- The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
113
- attention_dropout (`float`, *optional*, defaults to 0.0):
114
- The dropout ratio for the attention probabilities.
115
-
116
- ```python
117
- >>> from transformers import Qwen2Model, Qwen2Config
118
-
119
- >>> # Initializing a Qwen2 style configuration
120
- >>> configuration = Qwen2Config()
121
-
122
- >>> # Initializing a model from the Qwen2-7B style configuration
123
- >>> model = Qwen2Model(configuration)
124
-
125
- >>> # Accessing the model configuration
126
- >>> configuration = model.config
127
- ```"""
128
-
129
- model_type = "Qwen2NomicVision"
130
- keys_to_ignore_at_inference = ["past_key_values"]
131
-
132
- def __init__(
133
- self,
134
- vocab_size=151936,
135
- hidden_size=4096,
136
- intermediate_size=22016,
137
- num_hidden_layers=32,
138
- num_attention_heads=32,
139
- num_key_value_heads=32,
140
- hidden_act="silu",
141
- max_position_embeddings=32768,
142
- initializer_range=0.02,
143
- rms_norm_eps=1e-6,
144
- use_cache=True,
145
- tie_word_embeddings=False,
146
- rope_theta=10000.0,
147
- rope_scaling=None,
148
- use_sliding_window=False,
149
- sliding_window=4096,
150
- max_window_layers=28,
151
- attention_dropout=0.0,
152
- **kwargs,
153
- ):
154
- self.vocab_size = vocab_size
155
- self.max_position_embeddings = max_position_embeddings
156
- self.hidden_size = hidden_size
157
- self.intermediate_size = intermediate_size
158
- self.num_hidden_layers = num_hidden_layers
159
- self.num_attention_heads = num_attention_heads
160
- self.use_sliding_window = use_sliding_window
161
- self.sliding_window = sliding_window if use_sliding_window else None
162
- self.max_window_layers = max_window_layers
163
-
164
- # for backward compatibility
165
- if num_key_value_heads is None:
166
- num_key_value_heads = num_attention_heads
167
-
168
- self.num_key_value_heads = num_key_value_heads
169
- self.hidden_act = hidden_act
170
- self.initializer_range = initializer_range
171
- self.rms_norm_eps = rms_norm_eps
172
- self.use_cache = use_cache
173
- self.rope_theta = rope_theta
174
- self.rope_scaling = rope_scaling
175
- self.attention_dropout = attention_dropout
176
- # Validate the correctness of rotary position embeddings parameters
177
- # BC: if there is a 'type' field, move it to 'rope_type'.
178
- if self.rope_scaling is not None and "type" in self.rope_scaling:
179
- self.rope_scaling["rope_type"] = self.rope_scaling["type"]
180
- rope_config_validation(self)
181
-
182
- super().__init__(
183
- tie_word_embeddings=tie_word_embeddings,
184
- **kwargs,
185
  )
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # """Qwen2 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ # logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Qwen2NomicVisionConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
28
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of
30
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 151936):
38
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`Qwen2Model`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 22016):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ num_key_value_heads (`int`, *optional*, defaults to 32):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
55
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
56
+ The non-linear activation function (function or string) in the decoder.
57
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
58
+ The maximum sequence length that this model might ever be used with.
59
+ initializer_range (`float`, *optional*, defaults to 0.02):
60
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
62
+ The epsilon used by the rms normalization layers.
63
+ use_cache (`bool`, *optional*, defaults to `True`):
64
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
65
+ relevant if `config.is_decoder=True`.
66
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
67
+ Whether the model's input and output word embeddings should be tied.
68
+ rope_theta (`float`, *optional*, defaults to 10000.0):
69
+ The base period of the RoPE embeddings.
70
+ rope_scaling (`Dict`, *optional*):
71
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
72
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
73
+ accordingly.
74
+ Expected contents:
75
+ `rope_type` (`str`):
76
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
77
+ 'llama3'], with 'default' being the original RoPE implementation.
78
+ `factor` (`float`, *optional*):
79
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
80
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
81
+ original maximum pre-trained length.
82
+ `original_max_position_embeddings` (`int`, *optional*):
83
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
84
+ pretraining.
85
+ `attention_factor` (`float`, *optional*):
86
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
87
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
88
+ `factor` field to infer the suggested value.
89
+ `beta_fast` (`float`, *optional*):
90
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
91
+ ramp function. If unspecified, it defaults to 32.
92
+ `beta_slow` (`float`, *optional*):
93
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
94
+ ramp function. If unspecified, it defaults to 1.
95
+ `short_factor` (`List[float]`, *optional*):
96
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
97
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
98
+ size divided by the number of attention heads divided by 2
99
+ `long_factor` (`List[float]`, *optional*):
100
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
101
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
102
+ size divided by the number of attention heads divided by 2
103
+ `low_freq_factor` (`float`, *optional*):
104
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
105
+ `high_freq_factor` (`float`, *optional*):
106
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
107
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
108
+ Whether to use sliding window attention.
109
+ sliding_window (`int`, *optional*, defaults to 4096):
110
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
111
+ max_window_layers (`int`, *optional*, defaults to 28):
112
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
113
+ attention_dropout (`float`, *optional*, defaults to 0.0):
114
+ The dropout ratio for the attention probabilities.
115
+
116
+ ```python
117
+ >>> from transformers import Qwen2Model, Qwen2Config
118
+
119
+ >>> # Initializing a Qwen2 style configuration
120
+ >>> configuration = Qwen2Config()
121
+
122
+ >>> # Initializing a model from the Qwen2-7B style configuration
123
+ >>> model = Qwen2Model(configuration)
124
+
125
+ >>> # Accessing the model configuration
126
+ >>> configuration = model.config
127
+ ```"""
128
+
129
+ model_type = "Qwen2NomicVision"
130
+ keys_to_ignore_at_inference = ["past_key_values"]
131
+
132
+ def __init__(
133
+ self,
134
+ vocab_size=151936,
135
+ hidden_size=4096,
136
+ intermediate_size=22016,
137
+ num_hidden_layers=32,
138
+ num_attention_heads=32,
139
+ num_key_value_heads=32,
140
+ hidden_act="silu",
141
+ max_position_embeddings=32768,
142
+ initializer_range=0.02,
143
+ rms_norm_eps=1e-6,
144
+ use_cache=True,
145
+ tie_word_embeddings=False,
146
+ rope_theta=10000.0,
147
+ rope_scaling=None,
148
+ use_sliding_window=False,
149
+ sliding_window=4096,
150
+ max_window_layers=28,
151
+ attention_dropout=0.0,
152
+ **kwargs,
153
+ ):
154
+ self.vocab_size = vocab_size
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.hidden_size = hidden_size
157
+ self.intermediate_size = intermediate_size
158
+ self.num_hidden_layers = num_hidden_layers
159
+ self.num_attention_heads = num_attention_heads
160
+ self.use_sliding_window = use_sliding_window
161
+ self.sliding_window = sliding_window if use_sliding_window else None
162
+ self.max_window_layers = max_window_layers
163
+
164
+ # for backward compatibility
165
+ if num_key_value_heads is None:
166
+ num_key_value_heads = num_attention_heads
167
+
168
+ self.num_key_value_heads = num_key_value_heads
169
+ self.hidden_act = hidden_act
170
+ self.initializer_range = initializer_range
171
+ self.rms_norm_eps = rms_norm_eps
172
+ self.use_cache = use_cache
173
+ self.rope_theta = rope_theta
174
+ self.rope_scaling = rope_scaling
175
+ self.attention_dropout = attention_dropout
176
+ # Validate the correctness of rotary position embeddings parameters
177
+ # BC: if there is a 'type' field, move it to 'rope_type'.
178
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
179
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
180
+ rope_config_validation(self)
181
+
182
+ super().__init__(
183
+ tie_word_embeddings=tie_word_embeddings,
184
+ **kwargs,
185
  )
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:67d05c51cad55d769d068c3d9b66b126dbba1d91ed81185911e5f5fde00e4129
3
  size 2350730960
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eeae138e851faff4fa506a1265a093f0bf5cac593d97679db48611ddc7eaee8
3
  size 2350730960
modeling_qwen2_nomic_vision.py CHANGED
The diff for this file is too large to render. See raw diff