jonatasgrosman's picture
Update README.md
d9da0be
|
raw
history blame
5.5 kB
metadata
language: it
license: apache-2.0
datasets:
  - common_voice
  - mozilla-foundation/common_voice_6_0
metrics:
  - wer
  - cer
tags:
  - audio
  - automatic-speech-recognition
  - hf-asr-leaderboard
  - it
  - mozilla-foundation/common_voice_6_0
  - robust-speech-event
  - speech
  - xlsr-fine-tuning-week
model-index:
  - name: XLSR Wav2Vec2 Italian by Jonatas Grosman
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice it
          type: common_voice
          args: it
        metrics:
          - name: Test WER
            type: wer
            value: 9.41
          - name: Test CER
            type: cer
            value: 2.29
          - name: Test WER (+LM)
            type: wer
            value: 6.91
          - name: Test CER (+LM)
            type: cer
            value: 1.83
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: it
        metrics:
          - name: Dev WER
            type: wer
            value: 21.78
          - name: Dev CER
            type: cer
            value: 7.94
          - name: Dev WER (+LM)
            type: wer
            value: 15.82
          - name: Dev CER (+LM)
            type: cer
            value: 6.83

Fine-tuned XLSR-53 large model for speech recognition in Italian

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice 6.1. When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

Usage

The model can be used directly (without a language model) as follows...

Using the HuggingSound library:

from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-italian")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)

Writing your own inference script:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "it"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-italian"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
Reference Prediction
POI LEI MORÌ. POI LEI MORÌ
IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI. IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI
"FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE." FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE
IL VUOTO ASSOLUTO? IL VUOTO ASSOLUTO
DOPO ALCUNI ANNI, EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI. DOPO ALCUNI ANNI EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI
SALVATION SUE SALVATION SOO
IN QUESTO MODO, DECIO OTTENNE IL POTERE IMPERIALE. IN QUESTO MODO DECHO OTTENNE IL POTERE IMPERIALE
SPARTA NOVARA ACQUISISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA. PARCANOVARACFILISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA
IN SEGUITO, KYGO E SHEAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE. IN SEGUITO KIGO E SHIAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE
ALAN CLARKE ALAN CLARK

Evaluation

  1. To evaluate on mozilla-foundation/common_voice_6_0 with split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset mozilla-foundation/common_voice_6_0 --config it --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Citation

If you want to cite this model you can use this:

@misc{grosman2021xlsr53-large-italian,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {I}talian},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-italian}},
  year={2021}
}