johnpaulbin's picture
Upload folder using huggingface_hub
cf1fd39 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: I'm important.
    sentences:
      - I'm big.
      - kili li tawa anpa poka kasi.
      - mi suli.
  - source_sentence: mi suli.
    sentences:
      - I'm fat.
      - I'm big.
      - kili li tawa anpa poka kasi.
  - source_sentence: I am tall.
    sentences:
      - I'm fat.
      - mi suli.
      - The apple does not fall far from the tree.
  - source_sentence: I am tall.
    sentences:
      - I'm important.
      - kili li tawa anpa poka kasi.
      - mi suli.
  - source_sentence: mi suli.
    sentences:
      - The apple does not fall far from the tree.
      - The apple does not fall far from the tree.
      - mi suli.
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'mi suli.',
    'The apple does not fall far from the tree.',
    'The apple does not fall far from the tree.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}