NASES-clara-med / README.md
joheras's picture
update model card README.md
4adb0d6
|
raw
history blame
4.15 kB
metadata
tags:
  - simplification
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: NASES-clara-med
    results: []

NASES-clara-med

This model is a fine-tuned version of ELiRF/NASES on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2666
  • Rouge1: 44.0787
  • Rouge2: 26.1429
  • Rougel: 38.4286
  • Rougelsum: 38.5202

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 190 2.1442 43.6265 25.4681 37.6224 37.8012
No log 2.0 380 2.0839 44.0795 25.8075 37.9463 38.0445
1.8145 3.0 570 2.1689 43.3863 25.7517 37.4822 37.7461
1.8145 4.0 760 2.2569 43.9293 25.7951 37.9177 38.0658
0.6803 5.0 950 2.3760 43.9972 26.1618 38.4315 38.5305
0.6803 6.0 1140 2.4979 44.7986 27.0088 39.0031 39.1731
0.6803 7.0 1330 2.5881 43.8723 25.9782 38.1705 38.3225
0.2323 8.0 1520 2.6624 43.851 25.9263 38.2445 38.3659
0.2323 9.0 1710 2.7113 43.5292 25.4795 37.6883 37.8992
0.1464 10.0 1900 2.7451 44.6014 27.0125 38.9456 39.1796
0.1464 11.0 2090 2.7932 43.9568 26.0931 38.3672 38.5118
0.1464 12.0 2280 2.8651 43.8429 25.9007 38.0691 38.191
0.0863 13.0 2470 2.8978 44.192 26.1818 38.4167 38.579
0.0863 14.0 2660 2.9279 43.6745 25.6503 37.8948 38.0051
0.0657 15.0 2850 2.9942 44.1633 25.7856 38.0295 38.1905
0.0657 16.0 3040 2.9843 44.0347 25.9893 38.3486 38.5219
0.0657 17.0 3230 3.0189 44.3013 26.1884 38.5594 38.7396
0.0473 18.0 3420 3.0837 43.5877 25.6931 38.1147 38.2258
0.0473 19.0 3610 3.1025 44.1191 25.9657 38.338 38.5039
0.0302 20.0 3800 3.1395 44.393 26.3189 38.7891 38.8664
0.0302 21.0 3990 3.1808 44.4783 26.3023 38.4714 38.6428
0.0302 22.0 4180 3.1388 44.6364 26.7442 38.9591 39.1097
0.0194 23.0 4370 3.1859 44.919 26.9807 39.2653 39.3442
0.0194 24.0 4560 3.2126 44.4693 26.6534 38.8354 38.9278
0.0159 25.0 4750 3.1988 44.5436 26.63 38.9413 39.0007
0.0159 26.0 4940 3.2539 44.0378 26.0958 38.4445 38.5443
0.0159 27.0 5130 3.2844 44.6057 26.476 38.6502 38.7949
0.0117 28.0 5320 3.2755 44.1804 26.3747 38.6084 38.7027
0.0117 29.0 5510 3.2731 44.0453 26.0298 38.3911 38.4826
0.0102 30.0 5700 3.2666 44.0787 26.1429 38.4286 38.5202

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0
  • Datasets 2.8.0
  • Tokenizers 0.12.1