layoutlm-funsd / README.md
joeljoseph1599's picture
End of training
ed1a84c
|
raw
history blame
7.04 kB
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7040
  • Answer: {'precision': 0.6568109820485745, 'recall': 0.7688504326328801, 'f1': 0.7084282460136675, 'number': 809}
  • Header: {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119}
  • Question: {'precision': 0.7009113504556752, 'recall': 0.7943661971830986, 'f1': 0.744718309859155, 'number': 1065}
  • Overall Precision: 0.6625
  • Overall Recall: 0.7516
  • Overall F1: 0.7043
  • Overall Accuracy: 0.7902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8156 1.0 10 1.6000 {'precision': 0.016967126193001062, 'recall': 0.019777503090234856, 'f1': 0.0182648401826484, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.19947159841479525, 'recall': 0.14178403755868543, 'f1': 0.16575192096597147, 'number': 1065} 0.0982 0.0838 0.0904 0.3885
1.4929 2.0 20 1.2928 {'precision': 0.2471213463241807, 'recall': 0.34487021013597036, 'f1': 0.2879256965944273, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.37381275440976935, 'recall': 0.5173708920187794, 'f1': 0.43402914533280823, 'number': 1065} 0.3189 0.4165 0.3612 0.5918
1.1481 3.0 30 1.0078 {'precision': 0.37816979051819183, 'recall': 0.42398022249690975, 'f1': 0.3997668997668998, 'number': 809} {'precision': 0.14705882352941177, 'recall': 0.04201680672268908, 'f1': 0.06535947712418301, 'number': 119} {'precision': 0.5541346973572038, 'recall': 0.6103286384976526, 'f1': 0.580875781948168, 'number': 1065} 0.4721 0.5008 0.4860 0.6646
0.9026 4.0 40 0.8847 {'precision': 0.5041322314049587, 'recall': 0.6786155747836835, 'f1': 0.5785036880927291, 'number': 809} {'precision': 0.16, 'recall': 0.06722689075630252, 'f1': 0.09467455621301775, 'number': 119} {'precision': 0.6154513888888888, 'recall': 0.6657276995305165, 'f1': 0.6396030672079386, 'number': 1065} 0.5526 0.6352 0.5910 0.7209
0.7479 5.0 50 0.7907 {'precision': 0.6089324618736384, 'recall': 0.6909765142150803, 'f1': 0.6473653734800232, 'number': 809} {'precision': 0.23076923076923078, 'recall': 0.15126050420168066, 'f1': 0.18274111675126906, 'number': 119} {'precision': 0.6239600665557404, 'recall': 0.704225352112676, 'f1': 0.6616674018526687, 'number': 1065} 0.6037 0.6658 0.6333 0.7576
0.651 6.0 60 0.7416 {'precision': 0.604040404040404, 'recall': 0.7391841779975278, 'f1': 0.6648137854363535, 'number': 809} {'precision': 0.20238095238095238, 'recall': 0.14285714285714285, 'f1': 0.16748768472906403, 'number': 119} {'precision': 0.6520376175548589, 'recall': 0.7812206572769953, 'f1': 0.7108073472874841, 'number': 1065} 0.6157 0.7260 0.6664 0.7732
0.5864 7.0 70 0.7379 {'precision': 0.6485355648535565, 'recall': 0.7663782447466008, 'f1': 0.7025495750708215, 'number': 809} {'precision': 0.22772277227722773, 'recall': 0.19327731092436976, 'f1': 0.2090909090909091, 'number': 119} {'precision': 0.7006861063464837, 'recall': 0.7671361502347418, 'f1': 0.7324069923800985, 'number': 1065} 0.6568 0.7326 0.6926 0.7746
0.5425 8.0 80 0.7093 {'precision': 0.6484210526315789, 'recall': 0.761433868974042, 'f1': 0.7003979533826037, 'number': 809} {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119} {'precision': 0.6843800322061192, 'recall': 0.7981220657276995, 'f1': 0.7368877329865627, 'number': 1065} 0.6496 0.7496 0.6960 0.7901
0.4986 9.0 90 0.7080 {'precision': 0.6553911205073996, 'recall': 0.7663782447466008, 'f1': 0.7065527065527065, 'number': 809} {'precision': 0.2857142857142857, 'recall': 0.25210084033613445, 'f1': 0.26785714285714285, 'number': 119} {'precision': 0.7062761506276151, 'recall': 0.7924882629107981, 'f1': 0.7469026548672565, 'number': 1065} 0.6652 0.7496 0.7049 0.7881
0.481 10.0 100 0.7040 {'precision': 0.6568109820485745, 'recall': 0.7688504326328801, 'f1': 0.7084282460136675, 'number': 809} {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} {'precision': 0.7009113504556752, 'recall': 0.7943661971830986, 'f1': 0.744718309859155, 'number': 1065} 0.6625 0.7516 0.7043 0.7902

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3