|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/detr-resnet-50 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: chickens |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# chickens |
|
|
|
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1692 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 1440 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| No log | 1.0 | 23 | 0.9258 | |
|
| 1.1129 | 2.0 | 46 | 0.8241 | |
|
| 0.8989 | 3.0 | 69 | 0.8080 | |
|
| 0.8799 | 4.0 | 92 | 0.9306 | |
|
| 0.8799 | 5.0 | 115 | 0.5536 | |
|
| 0.6986 | 6.0 | 138 | 0.5199 | |
|
| 0.6088 | 7.0 | 161 | 0.4739 | |
|
| 0.631 | 8.0 | 184 | 0.5007 | |
|
| 0.631 | 9.0 | 207 | 0.6598 | |
|
| 0.5804 | 10.0 | 230 | 0.4345 | |
|
| 0.5656 | 11.0 | 253 | 0.4864 | |
|
| 0.5725 | 12.0 | 276 | 0.3707 | |
|
| 0.5725 | 13.0 | 299 | 0.3357 | |
|
| 0.4953 | 14.0 | 322 | 0.4104 | |
|
| 0.4619 | 15.0 | 345 | 0.3681 | |
|
| 0.4463 | 16.0 | 368 | 0.3045 | |
|
| 0.433 | 17.0 | 391 | 0.3330 | |
|
| 0.433 | 18.0 | 414 | 0.3561 | |
|
| 0.396 | 19.0 | 437 | 0.2583 | |
|
| 0.3845 | 20.0 | 460 | 0.2699 | |
|
| 0.3569 | 21.0 | 483 | 0.2714 | |
|
| 0.3569 | 22.0 | 506 | 0.2978 | |
|
| 0.3574 | 23.0 | 529 | 0.2844 | |
|
| 0.3424 | 24.0 | 552 | 0.2650 | |
|
| 0.35 | 25.0 | 575 | 0.2829 | |
|
| 0.35 | 26.0 | 598 | 0.2533 | |
|
| 0.34 | 27.0 | 621 | 0.2306 | |
|
| 0.3309 | 28.0 | 644 | 0.2348 | |
|
| 0.3297 | 29.0 | 667 | 0.2912 | |
|
| 0.3357 | 30.0 | 690 | 0.2679 | |
|
| 0.3357 | 31.0 | 713 | 0.2685 | |
|
| 0.3267 | 32.0 | 736 | 0.2384 | |
|
| 0.3102 | 33.0 | 759 | 0.2346 | |
|
| 0.3204 | 34.0 | 782 | 0.2850 | |
|
| 0.3204 | 35.0 | 805 | 0.2969 | |
|
| 0.3191 | 36.0 | 828 | 0.2315 | |
|
| 0.3051 | 37.0 | 851 | 0.1958 | |
|
| 0.2825 | 38.0 | 874 | 0.2211 | |
|
| 0.2825 | 39.0 | 897 | 0.2309 | |
|
| 0.2895 | 40.0 | 920 | 0.2610 | |
|
| 0.2891 | 41.0 | 943 | 0.2334 | |
|
| 0.279 | 42.0 | 966 | 0.2149 | |
|
| 0.279 | 43.0 | 989 | 0.2017 | |
|
| 0.2735 | 44.0 | 1012 | 0.2445 | |
|
| 0.2688 | 45.0 | 1035 | 0.2164 | |
|
| 0.2602 | 46.0 | 1058 | 0.1995 | |
|
| 0.2644 | 47.0 | 1081 | 0.1936 | |
|
| 0.2644 | 48.0 | 1104 | 0.1884 | |
|
| 0.2634 | 49.0 | 1127 | 0.1974 | |
|
| 0.2568 | 50.0 | 1150 | 0.1981 | |
|
| 0.2456 | 51.0 | 1173 | 0.1799 | |
|
| 0.2456 | 52.0 | 1196 | 0.1777 | |
|
| 0.2479 | 53.0 | 1219 | 0.1915 | |
|
| 0.2529 | 54.0 | 1242 | 0.1928 | |
|
| 0.2533 | 55.0 | 1265 | 0.1772 | |
|
| 0.2533 | 56.0 | 1288 | 0.1863 | |
|
| 0.2516 | 57.0 | 1311 | 0.1775 | |
|
| 0.2495 | 58.0 | 1334 | 0.1808 | |
|
| 0.2428 | 59.0 | 1357 | 0.1734 | |
|
| 0.2454 | 60.0 | 1380 | 0.1696 | |
|
| 0.2454 | 61.0 | 1403 | 0.1766 | |
|
| 0.2452 | 62.0 | 1426 | 0.1718 | |
|
| 0.2367 | 62.6087 | 1440 | 0.1692 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.19.1 |
|
|