jnwprk's picture
update model card README.md
7da4bda
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: hate_detection_model
    results: []

hate_detection_model

This model is a fine-tuned version of sangrimlee/bert-base-multilingual-cased-nsmc on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2937
  • Accuracy: 0.7686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 62 0.4613 0.7834
No log 2.0 124 0.5033 0.7516
No log 3.0 186 0.4699 0.7898
No log 4.0 248 0.5516 0.7516
No log 5.0 310 0.6990 0.7219
No log 6.0 372 0.6500 0.7665
No log 7.0 434 0.7347 0.7856
No log 8.0 496 0.9104 0.7389
0.3218 9.0 558 0.7689 0.8153
0.3218 10.0 620 0.9496 0.7792
0.3218 11.0 682 0.9598 0.7707
0.3218 12.0 744 1.2402 0.7091
0.3218 13.0 806 1.1616 0.7537
0.3218 14.0 868 1.0903 0.7771
0.3218 15.0 930 1.3674 0.7304
0.3218 16.0 992 1.1962 0.7728
0.0623 17.0 1054 1.3640 0.7452
0.0623 18.0 1116 1.3093 0.7622
0.0623 19.0 1178 1.3108 0.7707
0.0623 20.0 1240 1.2937 0.7686

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3