gte-small-ct2-int8 / README.md
jncraton's picture
Upload 8 files
42a7c4b
---
tags:
- mteb
- sentence-similarity
- sentence-transformers
- Sentence Transformers
model-index:
- name: gte-small
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.22388059701493
- type: ap
value: 36.09895941426988
- type: f1
value: 67.3205651539195
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.81894999999999
- type: ap
value: 88.5240138417305
- type: f1
value: 91.80367382706962
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.032
- type: f1
value: 47.4490665674719
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.725
- type: map_at_10
value: 46.604
- type: map_at_100
value: 47.535
- type: map_at_1000
value: 47.538000000000004
- type: map_at_3
value: 41.833
- type: map_at_5
value: 44.61
- type: mrr_at_1
value: 31.223
- type: mrr_at_10
value: 46.794000000000004
- type: mrr_at_100
value: 47.725
- type: mrr_at_1000
value: 47.727000000000004
- type: mrr_at_3
value: 42.07
- type: mrr_at_5
value: 44.812000000000005
- type: ndcg_at_1
value: 30.725
- type: ndcg_at_10
value: 55.440999999999995
- type: ndcg_at_100
value: 59.134
- type: ndcg_at_1000
value: 59.199
- type: ndcg_at_3
value: 45.599000000000004
- type: ndcg_at_5
value: 50.637
- type: precision_at_1
value: 30.725
- type: precision_at_10
value: 8.364
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 18.848000000000003
- type: precision_at_5
value: 13.77
- type: recall_at_1
value: 30.725
- type: recall_at_10
value: 83.64200000000001
- type: recall_at_100
value: 99.14699999999999
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 56.543
- type: recall_at_5
value: 68.848
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 47.90178078197678
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.25728393431922
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 61.720297062897764
- type: mrr
value: 75.24139295607439
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 89.43527309184616
- type: cos_sim_spearman
value: 88.17128615100206
- type: euclidean_pearson
value: 87.89922623089282
- type: euclidean_spearman
value: 87.96104039655451
- type: manhattan_pearson
value: 87.9818290932077
- type: manhattan_spearman
value: 88.00923426576885
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 84.0844155844156
- type: f1
value: 84.01485017302213
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.36574769259432
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 35.4857033165287
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.261
- type: map_at_10
value: 42.419000000000004
- type: map_at_100
value: 43.927
- type: map_at_1000
value: 44.055
- type: map_at_3
value: 38.597
- type: map_at_5
value: 40.701
- type: mrr_at_1
value: 36.91
- type: mrr_at_10
value: 48.02
- type: mrr_at_100
value: 48.658
- type: mrr_at_1000
value: 48.708
- type: mrr_at_3
value: 44.945
- type: mrr_at_5
value: 46.705000000000005
- type: ndcg_at_1
value: 36.91
- type: ndcg_at_10
value: 49.353
- type: ndcg_at_100
value: 54.456
- type: ndcg_at_1000
value: 56.363
- type: ndcg_at_3
value: 43.483
- type: ndcg_at_5
value: 46.150999999999996
- type: precision_at_1
value: 36.91
- type: precision_at_10
value: 9.700000000000001
- type: precision_at_100
value: 1.557
- type: precision_at_1000
value: 0.202
- type: precision_at_3
value: 21.078
- type: precision_at_5
value: 15.421999999999999
- type: recall_at_1
value: 30.261
- type: recall_at_10
value: 63.242
- type: recall_at_100
value: 84.09100000000001
- type: recall_at_1000
value: 96.143
- type: recall_at_3
value: 46.478
- type: recall_at_5
value: 53.708
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.145
- type: map_at_10
value: 40.996
- type: map_at_100
value: 42.266999999999996
- type: map_at_1000
value: 42.397
- type: map_at_3
value: 38.005
- type: map_at_5
value: 39.628
- type: mrr_at_1
value: 38.344
- type: mrr_at_10
value: 46.827000000000005
- type: mrr_at_100
value: 47.446
- type: mrr_at_1000
value: 47.489
- type: mrr_at_3
value: 44.448
- type: mrr_at_5
value: 45.747
- type: ndcg_at_1
value: 38.344
- type: ndcg_at_10
value: 46.733000000000004
- type: ndcg_at_100
value: 51.103
- type: ndcg_at_1000
value: 53.075
- type: ndcg_at_3
value: 42.366
- type: ndcg_at_5
value: 44.242
- type: precision_at_1
value: 38.344
- type: precision_at_10
value: 8.822000000000001
- type: precision_at_100
value: 1.417
- type: precision_at_1000
value: 0.187
- type: precision_at_3
value: 20.403
- type: precision_at_5
value: 14.306
- type: recall_at_1
value: 31.145
- type: recall_at_10
value: 56.909
- type: recall_at_100
value: 75.274
- type: recall_at_1000
value: 87.629
- type: recall_at_3
value: 43.784
- type: recall_at_5
value: 49.338
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.83
- type: map_at_10
value: 51.553000000000004
- type: map_at_100
value: 52.581
- type: map_at_1000
value: 52.638
- type: map_at_3
value: 48.112
- type: map_at_5
value: 50.095
- type: mrr_at_1
value: 44.513999999999996
- type: mrr_at_10
value: 54.998000000000005
- type: mrr_at_100
value: 55.650999999999996
- type: mrr_at_1000
value: 55.679
- type: mrr_at_3
value: 52.602000000000004
- type: mrr_at_5
value: 53.931
- type: ndcg_at_1
value: 44.513999999999996
- type: ndcg_at_10
value: 57.67400000000001
- type: ndcg_at_100
value: 61.663999999999994
- type: ndcg_at_1000
value: 62.743
- type: ndcg_at_3
value: 51.964
- type: ndcg_at_5
value: 54.773
- type: precision_at_1
value: 44.513999999999996
- type: precision_at_10
value: 9.423
- type: precision_at_100
value: 1.2309999999999999
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 23.323
- type: precision_at_5
value: 16.163
- type: recall_at_1
value: 38.83
- type: recall_at_10
value: 72.327
- type: recall_at_100
value: 89.519
- type: recall_at_1000
value: 97.041
- type: recall_at_3
value: 57.206
- type: recall_at_5
value: 63.88399999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.484
- type: map_at_10
value: 34.527
- type: map_at_100
value: 35.661
- type: map_at_1000
value: 35.739
- type: map_at_3
value: 32.199
- type: map_at_5
value: 33.632
- type: mrr_at_1
value: 27.458
- type: mrr_at_10
value: 36.543
- type: mrr_at_100
value: 37.482
- type: mrr_at_1000
value: 37.543
- type: mrr_at_3
value: 34.256
- type: mrr_at_5
value: 35.618
- type: ndcg_at_1
value: 27.458
- type: ndcg_at_10
value: 39.396
- type: ndcg_at_100
value: 44.742
- type: ndcg_at_1000
value: 46.708
- type: ndcg_at_3
value: 34.817
- type: ndcg_at_5
value: 37.247
- type: precision_at_1
value: 27.458
- type: precision_at_10
value: 5.976999999999999
- type: precision_at_100
value: 0.907
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 14.878
- type: precision_at_5
value: 10.35
- type: recall_at_1
value: 25.484
- type: recall_at_10
value: 52.317
- type: recall_at_100
value: 76.701
- type: recall_at_1000
value: 91.408
- type: recall_at_3
value: 40.043
- type: recall_at_5
value: 45.879
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.719
- type: map_at_10
value: 25.269000000000002
- type: map_at_100
value: 26.442
- type: map_at_1000
value: 26.557
- type: map_at_3
value: 22.56
- type: map_at_5
value: 24.082
- type: mrr_at_1
value: 20.896
- type: mrr_at_10
value: 29.982999999999997
- type: mrr_at_100
value: 30.895
- type: mrr_at_1000
value: 30.961
- type: mrr_at_3
value: 27.239
- type: mrr_at_5
value: 28.787000000000003
- type: ndcg_at_1
value: 20.896
- type: ndcg_at_10
value: 30.814000000000004
- type: ndcg_at_100
value: 36.418
- type: ndcg_at_1000
value: 39.182
- type: ndcg_at_3
value: 25.807999999999996
- type: ndcg_at_5
value: 28.143
- type: precision_at_1
value: 20.896
- type: precision_at_10
value: 5.821
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 12.562000000000001
- type: precision_at_5
value: 9.254
- type: recall_at_1
value: 16.719
- type: recall_at_10
value: 43.155
- type: recall_at_100
value: 67.831
- type: recall_at_1000
value: 87.617
- type: recall_at_3
value: 29.259
- type: recall_at_5
value: 35.260999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.398999999999997
- type: map_at_10
value: 39.876
- type: map_at_100
value: 41.205999999999996
- type: map_at_1000
value: 41.321999999999996
- type: map_at_3
value: 36.588
- type: map_at_5
value: 38.538
- type: mrr_at_1
value: 35.9
- type: mrr_at_10
value: 45.528
- type: mrr_at_100
value: 46.343
- type: mrr_at_1000
value: 46.388
- type: mrr_at_3
value: 42.862
- type: mrr_at_5
value: 44.440000000000005
- type: ndcg_at_1
value: 35.9
- type: ndcg_at_10
value: 45.987
- type: ndcg_at_100
value: 51.370000000000005
- type: ndcg_at_1000
value: 53.400000000000006
- type: ndcg_at_3
value: 40.841
- type: ndcg_at_5
value: 43.447
- type: precision_at_1
value: 35.9
- type: precision_at_10
value: 8.393
- type: precision_at_100
value: 1.283
- type: precision_at_1000
value: 0.166
- type: precision_at_3
value: 19.538
- type: precision_at_5
value: 13.975000000000001
- type: recall_at_1
value: 29.398999999999997
- type: recall_at_10
value: 58.361
- type: recall_at_100
value: 81.081
- type: recall_at_1000
value: 94.004
- type: recall_at_3
value: 43.657000000000004
- type: recall_at_5
value: 50.519999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.589
- type: map_at_10
value: 31.608999999999998
- type: map_at_100
value: 33.128
- type: map_at_1000
value: 33.247
- type: map_at_3
value: 28.671999999999997
- type: map_at_5
value: 30.233999999999998
- type: mrr_at_1
value: 26.712000000000003
- type: mrr_at_10
value: 36.713
- type: mrr_at_100
value: 37.713
- type: mrr_at_1000
value: 37.771
- type: mrr_at_3
value: 34.075
- type: mrr_at_5
value: 35.451
- type: ndcg_at_1
value: 26.712000000000003
- type: ndcg_at_10
value: 37.519999999999996
- type: ndcg_at_100
value: 43.946000000000005
- type: ndcg_at_1000
value: 46.297
- type: ndcg_at_3
value: 32.551
- type: ndcg_at_5
value: 34.660999999999994
- type: precision_at_1
value: 26.712000000000003
- type: precision_at_10
value: 7.066
- type: precision_at_100
value: 1.216
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 15.906
- type: precision_at_5
value: 11.437999999999999
- type: recall_at_1
value: 21.589
- type: recall_at_10
value: 50.090999999999994
- type: recall_at_100
value: 77.43900000000001
- type: recall_at_1000
value: 93.35900000000001
- type: recall_at_3
value: 36.028999999999996
- type: recall_at_5
value: 41.698
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.121666666666663
- type: map_at_10
value: 34.46258333333334
- type: map_at_100
value: 35.710499999999996
- type: map_at_1000
value: 35.82691666666666
- type: map_at_3
value: 31.563249999999996
- type: map_at_5
value: 33.189750000000004
- type: mrr_at_1
value: 29.66441666666667
- type: mrr_at_10
value: 38.5455
- type: mrr_at_100
value: 39.39566666666667
- type: mrr_at_1000
value: 39.45325
- type: mrr_at_3
value: 36.003333333333345
- type: mrr_at_5
value: 37.440916666666666
- type: ndcg_at_1
value: 29.66441666666667
- type: ndcg_at_10
value: 39.978416666666675
- type: ndcg_at_100
value: 45.278666666666666
- type: ndcg_at_1000
value: 47.52275
- type: ndcg_at_3
value: 35.00058333333334
- type: ndcg_at_5
value: 37.34908333333333
- type: precision_at_1
value: 29.66441666666667
- type: precision_at_10
value: 7.094500000000001
- type: precision_at_100
value: 1.1523333333333332
- type: precision_at_1000
value: 0.15358333333333332
- type: precision_at_3
value: 16.184166666666663
- type: precision_at_5
value: 11.6005
- type: recall_at_1
value: 25.121666666666663
- type: recall_at_10
value: 52.23975000000001
- type: recall_at_100
value: 75.48408333333333
- type: recall_at_1000
value: 90.95316666666668
- type: recall_at_3
value: 38.38458333333333
- type: recall_at_5
value: 44.39933333333333
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.569000000000003
- type: map_at_10
value: 30.389
- type: map_at_100
value: 31.396
- type: map_at_1000
value: 31.493
- type: map_at_3
value: 28.276
- type: map_at_5
value: 29.459000000000003
- type: mrr_at_1
value: 26.534000000000002
- type: mrr_at_10
value: 33.217999999999996
- type: mrr_at_100
value: 34.054
- type: mrr_at_1000
value: 34.12
- type: mrr_at_3
value: 31.058000000000003
- type: mrr_at_5
value: 32.330999999999996
- type: ndcg_at_1
value: 26.534000000000002
- type: ndcg_at_10
value: 34.608
- type: ndcg_at_100
value: 39.391999999999996
- type: ndcg_at_1000
value: 41.837999999999994
- type: ndcg_at_3
value: 30.564999999999998
- type: ndcg_at_5
value: 32.509
- type: precision_at_1
value: 26.534000000000002
- type: precision_at_10
value: 5.414
- type: precision_at_100
value: 0.847
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 12.986
- type: precision_at_5
value: 9.202
- type: recall_at_1
value: 23.569000000000003
- type: recall_at_10
value: 44.896
- type: recall_at_100
value: 66.476
- type: recall_at_1000
value: 84.548
- type: recall_at_3
value: 33.79
- type: recall_at_5
value: 38.512
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.36
- type: map_at_10
value: 23.57
- type: map_at_100
value: 24.698999999999998
- type: map_at_1000
value: 24.834999999999997
- type: map_at_3
value: 21.093
- type: map_at_5
value: 22.418
- type: mrr_at_1
value: 19.718
- type: mrr_at_10
value: 27.139999999999997
- type: mrr_at_100
value: 28.097
- type: mrr_at_1000
value: 28.177999999999997
- type: mrr_at_3
value: 24.805
- type: mrr_at_5
value: 26.121
- type: ndcg_at_1
value: 19.718
- type: ndcg_at_10
value: 28.238999999999997
- type: ndcg_at_100
value: 33.663
- type: ndcg_at_1000
value: 36.763
- type: ndcg_at_3
value: 23.747
- type: ndcg_at_5
value: 25.796000000000003
- type: precision_at_1
value: 19.718
- type: precision_at_10
value: 5.282
- type: precision_at_100
value: 0.9390000000000001
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 11.264000000000001
- type: precision_at_5
value: 8.341
- type: recall_at_1
value: 16.36
- type: recall_at_10
value: 38.669
- type: recall_at_100
value: 63.184
- type: recall_at_1000
value: 85.33800000000001
- type: recall_at_3
value: 26.214
- type: recall_at_5
value: 31.423000000000002
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.618999999999996
- type: map_at_10
value: 34.361999999999995
- type: map_at_100
value: 35.534
- type: map_at_1000
value: 35.634
- type: map_at_3
value: 31.402
- type: map_at_5
value: 32.815
- type: mrr_at_1
value: 30.037000000000003
- type: mrr_at_10
value: 38.284
- type: mrr_at_100
value: 39.141999999999996
- type: mrr_at_1000
value: 39.2
- type: mrr_at_3
value: 35.603
- type: mrr_at_5
value: 36.867
- type: ndcg_at_1
value: 30.037000000000003
- type: ndcg_at_10
value: 39.87
- type: ndcg_at_100
value: 45.243
- type: ndcg_at_1000
value: 47.507
- type: ndcg_at_3
value: 34.371
- type: ndcg_at_5
value: 36.521
- type: precision_at_1
value: 30.037000000000003
- type: precision_at_10
value: 6.819
- type: precision_at_100
value: 1.0699999999999998
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 15.392
- type: precision_at_5
value: 10.821
- type: recall_at_1
value: 25.618999999999996
- type: recall_at_10
value: 52.869
- type: recall_at_100
value: 76.395
- type: recall_at_1000
value: 92.19500000000001
- type: recall_at_3
value: 37.943
- type: recall_at_5
value: 43.342999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.283
- type: map_at_10
value: 32.155
- type: map_at_100
value: 33.724
- type: map_at_1000
value: 33.939
- type: map_at_3
value: 29.018
- type: map_at_5
value: 30.864000000000004
- type: mrr_at_1
value: 28.063
- type: mrr_at_10
value: 36.632
- type: mrr_at_100
value: 37.606
- type: mrr_at_1000
value: 37.671
- type: mrr_at_3
value: 33.992
- type: mrr_at_5
value: 35.613
- type: ndcg_at_1
value: 28.063
- type: ndcg_at_10
value: 38.024
- type: ndcg_at_100
value: 44.292
- type: ndcg_at_1000
value: 46.818
- type: ndcg_at_3
value: 32.965
- type: ndcg_at_5
value: 35.562
- type: precision_at_1
value: 28.063
- type: precision_at_10
value: 7.352
- type: precision_at_100
value: 1.514
- type: precision_at_1000
value: 0.23800000000000002
- type: precision_at_3
value: 15.481
- type: precision_at_5
value: 11.542
- type: recall_at_1
value: 23.283
- type: recall_at_10
value: 49.756
- type: recall_at_100
value: 78.05
- type: recall_at_1000
value: 93.854
- type: recall_at_3
value: 35.408
- type: recall_at_5
value: 42.187000000000005
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.201999999999998
- type: map_at_10
value: 26.826
- type: map_at_100
value: 27.961000000000002
- type: map_at_1000
value: 28.066999999999997
- type: map_at_3
value: 24.237000000000002
- type: map_at_5
value: 25.811
- type: mrr_at_1
value: 20.887
- type: mrr_at_10
value: 28.660000000000004
- type: mrr_at_100
value: 29.660999999999998
- type: mrr_at_1000
value: 29.731
- type: mrr_at_3
value: 26.155
- type: mrr_at_5
value: 27.68
- type: ndcg_at_1
value: 20.887
- type: ndcg_at_10
value: 31.523
- type: ndcg_at_100
value: 37.055
- type: ndcg_at_1000
value: 39.579
- type: ndcg_at_3
value: 26.529000000000003
- type: ndcg_at_5
value: 29.137
- type: precision_at_1
value: 20.887
- type: precision_at_10
value: 5.065
- type: precision_at_100
value: 0.856
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 11.399
- type: precision_at_5
value: 8.392
- type: recall_at_1
value: 19.201999999999998
- type: recall_at_10
value: 44.285000000000004
- type: recall_at_100
value: 69.768
- type: recall_at_1000
value: 88.302
- type: recall_at_3
value: 30.804
- type: recall_at_5
value: 37.039
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.244
- type: map_at_10
value: 18.956
- type: map_at_100
value: 20.674
- type: map_at_1000
value: 20.863
- type: map_at_3
value: 15.923000000000002
- type: map_at_5
value: 17.518
- type: mrr_at_1
value: 25.080999999999996
- type: mrr_at_10
value: 35.94
- type: mrr_at_100
value: 36.969
- type: mrr_at_1000
value: 37.013
- type: mrr_at_3
value: 32.617000000000004
- type: mrr_at_5
value: 34.682
- type: ndcg_at_1
value: 25.080999999999996
- type: ndcg_at_10
value: 26.539
- type: ndcg_at_100
value: 33.601
- type: ndcg_at_1000
value: 37.203
- type: ndcg_at_3
value: 21.695999999999998
- type: ndcg_at_5
value: 23.567
- type: precision_at_1
value: 25.080999999999996
- type: precision_at_10
value: 8.143
- type: precision_at_100
value: 1.5650000000000002
- type: precision_at_1000
value: 0.22300000000000003
- type: precision_at_3
value: 15.983
- type: precision_at_5
value: 12.417
- type: recall_at_1
value: 11.244
- type: recall_at_10
value: 31.457
- type: recall_at_100
value: 55.92
- type: recall_at_1000
value: 76.372
- type: recall_at_3
value: 19.784
- type: recall_at_5
value: 24.857000000000003
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.595
- type: map_at_10
value: 18.75
- type: map_at_100
value: 26.354
- type: map_at_1000
value: 27.912
- type: map_at_3
value: 13.794
- type: map_at_5
value: 16.021
- type: mrr_at_1
value: 65.75
- type: mrr_at_10
value: 73.837
- type: mrr_at_100
value: 74.22800000000001
- type: mrr_at_1000
value: 74.234
- type: mrr_at_3
value: 72.5
- type: mrr_at_5
value: 73.387
- type: ndcg_at_1
value: 52.625
- type: ndcg_at_10
value: 39.101
- type: ndcg_at_100
value: 43.836000000000006
- type: ndcg_at_1000
value: 51.086
- type: ndcg_at_3
value: 44.229
- type: ndcg_at_5
value: 41.555
- type: precision_at_1
value: 65.75
- type: precision_at_10
value: 30.45
- type: precision_at_100
value: 9.81
- type: precision_at_1000
value: 2.045
- type: precision_at_3
value: 48.667
- type: precision_at_5
value: 40.8
- type: recall_at_1
value: 8.595
- type: recall_at_10
value: 24.201
- type: recall_at_100
value: 50.096
- type: recall_at_1000
value: 72.677
- type: recall_at_3
value: 15.212
- type: recall_at_5
value: 18.745
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 46.565
- type: f1
value: 41.49914329345582
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 66.60000000000001
- type: map_at_10
value: 76.838
- type: map_at_100
value: 77.076
- type: map_at_1000
value: 77.09
- type: map_at_3
value: 75.545
- type: map_at_5
value: 76.39
- type: mrr_at_1
value: 71.707
- type: mrr_at_10
value: 81.514
- type: mrr_at_100
value: 81.64099999999999
- type: mrr_at_1000
value: 81.645
- type: mrr_at_3
value: 80.428
- type: mrr_at_5
value: 81.159
- type: ndcg_at_1
value: 71.707
- type: ndcg_at_10
value: 81.545
- type: ndcg_at_100
value: 82.477
- type: ndcg_at_1000
value: 82.73899999999999
- type: ndcg_at_3
value: 79.292
- type: ndcg_at_5
value: 80.599
- type: precision_at_1
value: 71.707
- type: precision_at_10
value: 10.035
- type: precision_at_100
value: 1.068
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 30.918
- type: precision_at_5
value: 19.328
- type: recall_at_1
value: 66.60000000000001
- type: recall_at_10
value: 91.353
- type: recall_at_100
value: 95.21
- type: recall_at_1000
value: 96.89999999999999
- type: recall_at_3
value: 85.188
- type: recall_at_5
value: 88.52
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.338
- type: map_at_10
value: 31.752000000000002
- type: map_at_100
value: 33.516
- type: map_at_1000
value: 33.694
- type: map_at_3
value: 27.716
- type: map_at_5
value: 29.67
- type: mrr_at_1
value: 38.117000000000004
- type: mrr_at_10
value: 47.323
- type: mrr_at_100
value: 48.13
- type: mrr_at_1000
value: 48.161
- type: mrr_at_3
value: 45.062000000000005
- type: mrr_at_5
value: 46.358
- type: ndcg_at_1
value: 38.117000000000004
- type: ndcg_at_10
value: 39.353
- type: ndcg_at_100
value: 46.044000000000004
- type: ndcg_at_1000
value: 49.083
- type: ndcg_at_3
value: 35.891
- type: ndcg_at_5
value: 36.661
- type: precision_at_1
value: 38.117000000000004
- type: precision_at_10
value: 11.187999999999999
- type: precision_at_100
value: 1.802
- type: precision_at_1000
value: 0.234
- type: precision_at_3
value: 24.126
- type: precision_at_5
value: 17.562
- type: recall_at_1
value: 19.338
- type: recall_at_10
value: 45.735
- type: recall_at_100
value: 71.281
- type: recall_at_1000
value: 89.537
- type: recall_at_3
value: 32.525
- type: recall_at_5
value: 37.671
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 36.995
- type: map_at_10
value: 55.032000000000004
- type: map_at_100
value: 55.86
- type: map_at_1000
value: 55.932
- type: map_at_3
value: 52.125
- type: map_at_5
value: 53.884
- type: mrr_at_1
value: 73.991
- type: mrr_at_10
value: 80.096
- type: mrr_at_100
value: 80.32000000000001
- type: mrr_at_1000
value: 80.331
- type: mrr_at_3
value: 79.037
- type: mrr_at_5
value: 79.719
- type: ndcg_at_1
value: 73.991
- type: ndcg_at_10
value: 63.786
- type: ndcg_at_100
value: 66.78
- type: ndcg_at_1000
value: 68.255
- type: ndcg_at_3
value: 59.501000000000005
- type: ndcg_at_5
value: 61.82299999999999
- type: precision_at_1
value: 73.991
- type: precision_at_10
value: 13.157
- type: precision_at_100
value: 1.552
- type: precision_at_1000
value: 0.17500000000000002
- type: precision_at_3
value: 37.519999999999996
- type: precision_at_5
value: 24.351
- type: recall_at_1
value: 36.995
- type: recall_at_10
value: 65.78699999999999
- type: recall_at_100
value: 77.583
- type: recall_at_1000
value: 87.421
- type: recall_at_3
value: 56.279999999999994
- type: recall_at_5
value: 60.878
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 86.80239999999999
- type: ap
value: 81.97305141128378
- type: f1
value: 86.76976305549273
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.166
- type: map_at_10
value: 33.396
- type: map_at_100
value: 34.588
- type: map_at_1000
value: 34.637
- type: map_at_3
value: 29.509999999999998
- type: map_at_5
value: 31.719
- type: mrr_at_1
value: 21.762
- type: mrr_at_10
value: 33.969
- type: mrr_at_100
value: 35.099000000000004
- type: mrr_at_1000
value: 35.141
- type: mrr_at_3
value: 30.148000000000003
- type: mrr_at_5
value: 32.324000000000005
- type: ndcg_at_1
value: 21.776999999999997
- type: ndcg_at_10
value: 40.306999999999995
- type: ndcg_at_100
value: 46.068
- type: ndcg_at_1000
value: 47.3
- type: ndcg_at_3
value: 32.416
- type: ndcg_at_5
value: 36.345
- type: precision_at_1
value: 21.776999999999997
- type: precision_at_10
value: 6.433
- type: precision_at_100
value: 0.932
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 13.897
- type: precision_at_5
value: 10.324
- type: recall_at_1
value: 21.166
- type: recall_at_10
value: 61.587
- type: recall_at_100
value: 88.251
- type: recall_at_1000
value: 97.727
- type: recall_at_3
value: 40.196
- type: recall_at_5
value: 49.611
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.04605563155496
- type: f1
value: 92.78007303978372
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 69.65116279069767
- type: f1
value: 52.75775172527262
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.34633490248822
- type: f1
value: 68.15345065392562
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.63887020847343
- type: f1
value: 76.08074680233685
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.77933406071333
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 32.06504927238196
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.20682480490871
- type: mrr
value: 33.41462721527003
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.548
- type: map_at_10
value: 13.086999999999998
- type: map_at_100
value: 16.698
- type: map_at_1000
value: 18.151999999999997
- type: map_at_3
value: 9.576
- type: map_at_5
value: 11.175
- type: mrr_at_1
value: 44.272
- type: mrr_at_10
value: 53.635999999999996
- type: mrr_at_100
value: 54.228
- type: mrr_at_1000
value: 54.26499999999999
- type: mrr_at_3
value: 51.754
- type: mrr_at_5
value: 53.086
- type: ndcg_at_1
value: 42.724000000000004
- type: ndcg_at_10
value: 34.769
- type: ndcg_at_100
value: 32.283
- type: ndcg_at_1000
value: 40.843
- type: ndcg_at_3
value: 39.852
- type: ndcg_at_5
value: 37.858999999999995
- type: precision_at_1
value: 44.272
- type: precision_at_10
value: 26.068
- type: precision_at_100
value: 8.328000000000001
- type: precision_at_1000
value: 2.1
- type: precision_at_3
value: 37.874
- type: precision_at_5
value: 33.065
- type: recall_at_1
value: 5.548
- type: recall_at_10
value: 16.936999999999998
- type: recall_at_100
value: 33.72
- type: recall_at_1000
value: 64.348
- type: recall_at_3
value: 10.764999999999999
- type: recall_at_5
value: 13.361
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.008
- type: map_at_10
value: 42.675000000000004
- type: map_at_100
value: 43.85
- type: map_at_1000
value: 43.884
- type: map_at_3
value: 38.286
- type: map_at_5
value: 40.78
- type: mrr_at_1
value: 31.518
- type: mrr_at_10
value: 45.015
- type: mrr_at_100
value: 45.924
- type: mrr_at_1000
value: 45.946999999999996
- type: mrr_at_3
value: 41.348
- type: mrr_at_5
value: 43.428
- type: ndcg_at_1
value: 31.489
- type: ndcg_at_10
value: 50.285999999999994
- type: ndcg_at_100
value: 55.291999999999994
- type: ndcg_at_1000
value: 56.05
- type: ndcg_at_3
value: 41.976
- type: ndcg_at_5
value: 46.103
- type: precision_at_1
value: 31.489
- type: precision_at_10
value: 8.456
- type: precision_at_100
value: 1.125
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 19.09
- type: precision_at_5
value: 13.841000000000001
- type: recall_at_1
value: 28.008
- type: recall_at_10
value: 71.21499999999999
- type: recall_at_100
value: 92.99
- type: recall_at_1000
value: 98.578
- type: recall_at_3
value: 49.604
- type: recall_at_5
value: 59.094
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.351
- type: map_at_10
value: 84.163
- type: map_at_100
value: 84.785
- type: map_at_1000
value: 84.801
- type: map_at_3
value: 81.16
- type: map_at_5
value: 83.031
- type: mrr_at_1
value: 80.96
- type: mrr_at_10
value: 87.241
- type: mrr_at_100
value: 87.346
- type: mrr_at_1000
value: 87.347
- type: mrr_at_3
value: 86.25699999999999
- type: mrr_at_5
value: 86.907
- type: ndcg_at_1
value: 80.97
- type: ndcg_at_10
value: 88.017
- type: ndcg_at_100
value: 89.241
- type: ndcg_at_1000
value: 89.34299999999999
- type: ndcg_at_3
value: 85.053
- type: ndcg_at_5
value: 86.663
- type: precision_at_1
value: 80.97
- type: precision_at_10
value: 13.358
- type: precision_at_100
value: 1.525
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.143
- type: precision_at_5
value: 24.451999999999998
- type: recall_at_1
value: 70.351
- type: recall_at_10
value: 95.39800000000001
- type: recall_at_100
value: 99.55199999999999
- type: recall_at_1000
value: 99.978
- type: recall_at_3
value: 86.913
- type: recall_at_5
value: 91.448
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 55.62406719814139
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 61.386700035141736
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.618
- type: map_at_10
value: 12.920000000000002
- type: map_at_100
value: 15.304
- type: map_at_1000
value: 15.656999999999998
- type: map_at_3
value: 9.187
- type: map_at_5
value: 10.937
- type: mrr_at_1
value: 22.8
- type: mrr_at_10
value: 35.13
- type: mrr_at_100
value: 36.239
- type: mrr_at_1000
value: 36.291000000000004
- type: mrr_at_3
value: 31.917
- type: mrr_at_5
value: 33.787
- type: ndcg_at_1
value: 22.8
- type: ndcg_at_10
value: 21.382
- type: ndcg_at_100
value: 30.257
- type: ndcg_at_1000
value: 36.001
- type: ndcg_at_3
value: 20.43
- type: ndcg_at_5
value: 17.622
- type: precision_at_1
value: 22.8
- type: precision_at_10
value: 11.26
- type: precision_at_100
value: 2.405
- type: precision_at_1000
value: 0.377
- type: precision_at_3
value: 19.633
- type: precision_at_5
value: 15.68
- type: recall_at_1
value: 4.618
- type: recall_at_10
value: 22.811999999999998
- type: recall_at_100
value: 48.787000000000006
- type: recall_at_1000
value: 76.63799999999999
- type: recall_at_3
value: 11.952
- type: recall_at_5
value: 15.892000000000001
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 84.01529458252244
- type: cos_sim_spearman
value: 77.92985224770254
- type: euclidean_pearson
value: 81.04251429422487
- type: euclidean_spearman
value: 77.92838490549133
- type: manhattan_pearson
value: 80.95892251458979
- type: manhattan_spearman
value: 77.81028089705941
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 83.97885282534388
- type: cos_sim_spearman
value: 75.1221970851712
- type: euclidean_pearson
value: 80.34455956720097
- type: euclidean_spearman
value: 74.5894274239938
- type: manhattan_pearson
value: 80.38999766325465
- type: manhattan_spearman
value: 74.68524557166975
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 82.95746064915672
- type: cos_sim_spearman
value: 85.08683458043946
- type: euclidean_pearson
value: 84.56699492836385
- type: euclidean_spearman
value: 85.66089116133713
- type: manhattan_pearson
value: 84.47553323458541
- type: manhattan_spearman
value: 85.56142206781472
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 82.71377893595067
- type: cos_sim_spearman
value: 81.03453291428589
- type: euclidean_pearson
value: 82.57136298308613
- type: euclidean_spearman
value: 81.15839961890875
- type: manhattan_pearson
value: 82.55157879373837
- type: manhattan_spearman
value: 81.1540163767054
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.64197832372373
- type: cos_sim_spearman
value: 88.31966852492485
- type: euclidean_pearson
value: 87.98692129976983
- type: euclidean_spearman
value: 88.6247340837856
- type: manhattan_pearson
value: 87.90437827826412
- type: manhattan_spearman
value: 88.56278787131457
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 81.84159950146693
- type: cos_sim_spearman
value: 83.90678384140168
- type: euclidean_pearson
value: 83.19005018860221
- type: euclidean_spearman
value: 84.16260415876295
- type: manhattan_pearson
value: 83.05030612994494
- type: manhattan_spearman
value: 83.99605629718336
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.49935350176666
- type: cos_sim_spearman
value: 87.59086606735383
- type: euclidean_pearson
value: 88.06537181129983
- type: euclidean_spearman
value: 87.6687448086014
- type: manhattan_pearson
value: 87.96599131972935
- type: manhattan_spearman
value: 87.63295748969642
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.68232799482763
- type: cos_sim_spearman
value: 67.99930378085793
- type: euclidean_pearson
value: 68.50275360001696
- type: euclidean_spearman
value: 67.81588179309259
- type: manhattan_pearson
value: 68.5892154749763
- type: manhattan_spearman
value: 67.84357259640682
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 84.37049618406554
- type: cos_sim_spearman
value: 85.57014313159492
- type: euclidean_pearson
value: 85.57469513908282
- type: euclidean_spearman
value: 85.661948135258
- type: manhattan_pearson
value: 85.36866831229028
- type: manhattan_spearman
value: 85.5043455368843
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 84.83259065376154
- type: mrr
value: 95.58455433455433
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 58.817
- type: map_at_10
value: 68.459
- type: map_at_100
value: 68.951
- type: map_at_1000
value: 68.979
- type: map_at_3
value: 65.791
- type: map_at_5
value: 67.583
- type: mrr_at_1
value: 61.667
- type: mrr_at_10
value: 69.368
- type: mrr_at_100
value: 69.721
- type: mrr_at_1000
value: 69.744
- type: mrr_at_3
value: 67.278
- type: mrr_at_5
value: 68.611
- type: ndcg_at_1
value: 61.667
- type: ndcg_at_10
value: 72.70100000000001
- type: ndcg_at_100
value: 74.928
- type: ndcg_at_1000
value: 75.553
- type: ndcg_at_3
value: 68.203
- type: ndcg_at_5
value: 70.804
- type: precision_at_1
value: 61.667
- type: precision_at_10
value: 9.533
- type: precision_at_100
value: 1.077
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 26.444000000000003
- type: precision_at_5
value: 17.599999999999998
- type: recall_at_1
value: 58.817
- type: recall_at_10
value: 84.789
- type: recall_at_100
value: 95.0
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 72.8
- type: recall_at_5
value: 79.294
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.8108910891089
- type: cos_sim_ap
value: 95.5743678558349
- type: cos_sim_f1
value: 90.43133366385722
- type: cos_sim_precision
value: 89.67551622418878
- type: cos_sim_recall
value: 91.2
- type: dot_accuracy
value: 99.75841584158415
- type: dot_ap
value: 94.00786363627253
- type: dot_f1
value: 87.51910341314316
- type: dot_precision
value: 89.20041536863967
- type: dot_recall
value: 85.9
- type: euclidean_accuracy
value: 99.81485148514851
- type: euclidean_ap
value: 95.4752113136905
- type: euclidean_f1
value: 90.44334975369456
- type: euclidean_precision
value: 89.126213592233
- type: euclidean_recall
value: 91.8
- type: manhattan_accuracy
value: 99.81584158415842
- type: manhattan_ap
value: 95.5163172682464
- type: manhattan_f1
value: 90.51987767584097
- type: manhattan_precision
value: 92.3076923076923
- type: manhattan_recall
value: 88.8
- type: max_accuracy
value: 99.81584158415842
- type: max_ap
value: 95.5743678558349
- type: max_f1
value: 90.51987767584097
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 62.63235986949449
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.334795589585575
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 52.02955214518782
- type: mrr
value: 52.8004838298956
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.63769566275453
- type: cos_sim_spearman
value: 30.422379185989335
- type: dot_pearson
value: 26.88493071882256
- type: dot_spearman
value: 26.505249740971305
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.21
- type: map_at_10
value: 1.654
- type: map_at_100
value: 10.095
- type: map_at_1000
value: 25.808999999999997
- type: map_at_3
value: 0.594
- type: map_at_5
value: 0.9289999999999999
- type: mrr_at_1
value: 78.0
- type: mrr_at_10
value: 87.019
- type: mrr_at_100
value: 87.019
- type: mrr_at_1000
value: 87.019
- type: mrr_at_3
value: 86.333
- type: mrr_at_5
value: 86.733
- type: ndcg_at_1
value: 73.0
- type: ndcg_at_10
value: 66.52900000000001
- type: ndcg_at_100
value: 53.433
- type: ndcg_at_1000
value: 51.324000000000005
- type: ndcg_at_3
value: 72.02199999999999
- type: ndcg_at_5
value: 69.696
- type: precision_at_1
value: 78.0
- type: precision_at_10
value: 70.39999999999999
- type: precision_at_100
value: 55.46
- type: precision_at_1000
value: 22.758
- type: precision_at_3
value: 76.667
- type: precision_at_5
value: 74.0
- type: recall_at_1
value: 0.21
- type: recall_at_10
value: 1.8849999999999998
- type: recall_at_100
value: 13.801
- type: recall_at_1000
value: 49.649
- type: recall_at_3
value: 0.632
- type: recall_at_5
value: 1.009
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.797
- type: map_at_10
value: 9.01
- type: map_at_100
value: 14.682
- type: map_at_1000
value: 16.336000000000002
- type: map_at_3
value: 4.546
- type: map_at_5
value: 5.9270000000000005
- type: mrr_at_1
value: 24.490000000000002
- type: mrr_at_10
value: 41.156
- type: mrr_at_100
value: 42.392
- type: mrr_at_1000
value: 42.408
- type: mrr_at_3
value: 38.775999999999996
- type: mrr_at_5
value: 40.102
- type: ndcg_at_1
value: 21.429000000000002
- type: ndcg_at_10
value: 22.222
- type: ndcg_at_100
value: 34.405
- type: ndcg_at_1000
value: 46.599000000000004
- type: ndcg_at_3
value: 25.261
- type: ndcg_at_5
value: 22.695999999999998
- type: precision_at_1
value: 24.490000000000002
- type: precision_at_10
value: 19.796
- type: precision_at_100
value: 7.306
- type: precision_at_1000
value: 1.5350000000000001
- type: precision_at_3
value: 27.211000000000002
- type: precision_at_5
value: 22.857
- type: recall_at_1
value: 1.797
- type: recall_at_10
value: 15.706000000000001
- type: recall_at_100
value: 46.412
- type: recall_at_1000
value: 83.159
- type: recall_at_3
value: 6.1370000000000005
- type: recall_at_5
value: 8.599
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.3302
- type: ap
value: 14.169121204575601
- type: f1
value: 54.229345975274235
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 58.22297679683077
- type: f1
value: 58.62984908377875
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 49.952922428464255
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.68140907194373
- type: cos_sim_ap
value: 70.12180123666836
- type: cos_sim_f1
value: 65.77501791258658
- type: cos_sim_precision
value: 60.07853403141361
- type: cos_sim_recall
value: 72.66490765171504
- type: dot_accuracy
value: 81.92167848840674
- type: dot_ap
value: 60.49837581423469
- type: dot_f1
value: 58.44186046511628
- type: dot_precision
value: 52.24532224532224
- type: dot_recall
value: 66.3060686015831
- type: euclidean_accuracy
value: 84.73505394289802
- type: euclidean_ap
value: 70.3278904593286
- type: euclidean_f1
value: 65.98851124940161
- type: euclidean_precision
value: 60.38107752956636
- type: euclidean_recall
value: 72.74406332453826
- type: manhattan_accuracy
value: 84.73505394289802
- type: manhattan_ap
value: 70.00737738537337
- type: manhattan_f1
value: 65.80150784822642
- type: manhattan_precision
value: 61.892583120204606
- type: manhattan_recall
value: 70.23746701846966
- type: max_accuracy
value: 84.73505394289802
- type: max_ap
value: 70.3278904593286
- type: max_f1
value: 65.98851124940161
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.44258159661582
- type: cos_sim_ap
value: 84.91926704880888
- type: cos_sim_f1
value: 77.07651086632926
- type: cos_sim_precision
value: 74.5894554883319
- type: cos_sim_recall
value: 79.73514012935017
- type: dot_accuracy
value: 85.88116583226608
- type: dot_ap
value: 78.9753854779923
- type: dot_f1
value: 72.17757637979255
- type: dot_precision
value: 66.80647486729143
- type: dot_recall
value: 78.48783492454572
- type: euclidean_accuracy
value: 88.5299025885823
- type: euclidean_ap
value: 85.08006075642194
- type: euclidean_f1
value: 77.29637336504163
- type: euclidean_precision
value: 74.69836253950014
- type: euclidean_recall
value: 80.08161379735141
- type: manhattan_accuracy
value: 88.55124771995187
- type: manhattan_ap
value: 85.00941529932851
- type: manhattan_f1
value: 77.33100233100232
- type: manhattan_precision
value: 73.37572573956317
- type: manhattan_recall
value: 81.73698798891284
- type: max_accuracy
value: 88.55124771995187
- type: max_ap
value: 85.08006075642194
- type: max_f1
value: 77.33100233100232
language:
- en
license: mit
---
# gte-small
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
## Metrics
We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
| [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
| [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
## Usage
Code example
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
model = AutoModel.from_pretrained("thenlper/gte-small")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
```
Use with sentence-transformers:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a very happy person']
model = SentenceTransformer('thenlper/gte-large')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```
### Limitation
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
### Citation
If you find our paper or models helpful, please consider citing them as follows:
```
@misc{li2023general,
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
year={2023},
eprint={2308.03281},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```