whisper-large-v2-es / README.md
jlondonobo's picture
update model card README.md
c9b640a
|
raw
history blame
1.77 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: es
          split: test
          args: es
        metrics:
          - name: Wer
            type: wer
            value: 5.074450392391248

openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1648
  • Wer: 5.0745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Wer
0.1556 0.5 750 0.1683 5.0959
0.1732 1.35 1500 0.1648 5.0745

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2