jjsprockel's picture
Update README.md
a7c6c17
|
raw
history blame
2.34 kB
metadata
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
  - text-to-speech
datasets:
  - voxpopuli
model-index:
  - name: speecht5_finetuned_voxpopuli_nl
    results: []

speecht5_finetuned_voxpopuli_nl

This model is a fine-tuned version of microsoft/speecht5_tts on the italian section of voxpopuli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4896

Model description

This model do text to speeche task in italian language

Intended uses & limitations

More information needed Example:

from transformers import AutoProcessor, SpeechT5ForTextToSpeech

processor = AutoProcessor.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it") model = SpeechT5ForTextToSpeech.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it")

speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)

text = "Quando pensi che sarà possibile viaggiare?" inputs = processor(text=text, return_tensors="pt")

vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)

from IPython.display import Audio Audio(speech.numpy(), rate=16000)

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss
0.5445 6.13 1000 0.5106
0.5262 12.26 2000 0.4964
0.5154 18.39 3000 0.4918
0.5186 24.52 4000 0.4896

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3