metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
structuredData:
angel_n_rounds:
- 0
- 0
- 0
pre_seed_n_rounds:
- 0
- 0
- 0
seed_funding_normalised:
- 0
- 0
- 0.0018888888888888
seed_n_rounds:
- 2
- 0
- 1
time_first_funding_normalised:
- 0.2120435618193465
- 0.380183642963912
- 0.209908178518044
time_till_series_a_normalised:
- 0.3253001132502832
- 0.3585503963759909
- 0.2226500566251415
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
C | 1.0 |
class_weight | |
dual | False |
fit_intercept | True |
intercept_scaling | 1 |
l1_ratio | |
max_iter | 100 |
multi_class | auto |
n_jobs | |
penalty | none |
random_state | 0 |
solver | lbfgs |
tol | 0.0001 |
verbose | 0 |
warm_start | False |
Model Plot
The model plot is below.
LogisticRegression(penalty='none', random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LogisticRegression(penalty='none', random_state=0)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
model_card_authors
jirko
model_description
just the temporal regression with reduced input features