|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: wav2vec2-base-checkpoint-6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-checkpoint-6 |
|
|
|
This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-5](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-5) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9738 |
|
- Wer: 0.3323 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 0.3435 | 1.82 | 1000 | 0.5637 | 0.3419 | |
|
| 0.2599 | 3.65 | 2000 | 0.5804 | 0.3473 | |
|
| 0.2043 | 5.47 | 3000 | 0.6481 | 0.3474 | |
|
| 0.1651 | 7.3 | 4000 | 0.6937 | 0.3452 | |
|
| 0.1376 | 9.12 | 5000 | 0.7221 | 0.3429 | |
|
| 0.118 | 10.95 | 6000 | 0.7634 | 0.3441 | |
|
| 0.105 | 12.77 | 7000 | 0.7789 | 0.3444 | |
|
| 0.0925 | 14.6 | 8000 | 0.8209 | 0.3444 | |
|
| 0.0863 | 16.42 | 9000 | 0.8293 | 0.3440 | |
|
| 0.0756 | 18.25 | 10000 | 0.8553 | 0.3412 | |
|
| 0.0718 | 20.07 | 11000 | 0.9006 | 0.3430 | |
|
| 0.0654 | 21.9 | 12000 | 0.9541 | 0.3458 | |
|
| 0.0605 | 23.72 | 13000 | 0.9400 | 0.3350 | |
|
| 0.0552 | 25.55 | 14000 | 0.9547 | 0.3363 | |
|
| 0.0543 | 27.37 | 15000 | 0.9715 | 0.3348 | |
|
| 0.0493 | 29.2 | 16000 | 0.9738 | 0.3323 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.3 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.13.3 |
|
- Tokenizers 0.10.3 |
|
|