jupyterjazz
commited on
Commit
•
ae40cb9
1
Parent(s):
3eb20d0
fix: 0 is not none
Browse filesSigned-off-by: jupyterjazz <saba.sturua@jina.ai>
- mha.py +1 -1
- mlp.py +1 -1
- modeling_lora.py +2 -2
- modeling_xlm_roberta.py +2 -2
mha.py
CHANGED
@@ -646,7 +646,7 @@ class MHA(nn.Module):
|
|
646 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
647 |
assert x_kv is None and mixer_subset is None
|
648 |
lora_kwargs = {}
|
649 |
-
if task:
|
650 |
lora_kwargs['task'] = task
|
651 |
lora_kwargs['residual'] = self.return_residual
|
652 |
|
|
|
646 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
647 |
assert x_kv is None and mixer_subset is None
|
648 |
lora_kwargs = {}
|
649 |
+
if task is not None:
|
650 |
lora_kwargs['task'] = task
|
651 |
lora_kwargs['residual'] = self.return_residual
|
652 |
|
mlp.py
CHANGED
@@ -49,7 +49,7 @@ class Mlp(nn.Module):
|
|
49 |
|
50 |
def forward(self, x, task):
|
51 |
lora_kwargs = {}
|
52 |
-
if task:
|
53 |
lora_kwargs['task'] = task
|
54 |
y = self.fc1(x, **lora_kwargs)
|
55 |
y = self.activation(y)
|
|
|
49 |
|
50 |
def forward(self, x, task):
|
51 |
lora_kwargs = {}
|
52 |
+
if task is not None:
|
53 |
lora_kwargs['task'] = task
|
54 |
y = self.fc1(x, **lora_kwargs)
|
55 |
y = self.activation(y)
|
modeling_lora.py
CHANGED
@@ -181,7 +181,7 @@ class LoRAParametrization(nn.Module):
|
|
181 |
|
182 |
def new_forward(self, input, task, residual=False):
|
183 |
task_idx = adaptation_map[task] if task else None
|
184 |
-
if task_idx:
|
185 |
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
186 |
else:
|
187 |
weights = self.weight
|
@@ -210,7 +210,7 @@ class LoRAParametrization(nn.Module):
|
|
210 |
|
211 |
def new_forward(self, input, task):
|
212 |
task_idx = adaptation_map[task] if task else None
|
213 |
-
if task_idx:
|
214 |
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
215 |
else:
|
216 |
weights = self.weight
|
|
|
181 |
|
182 |
def new_forward(self, input, task, residual=False):
|
183 |
task_idx = adaptation_map[task] if task else None
|
184 |
+
if task_idx is not None:
|
185 |
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
186 |
else:
|
187 |
weights = self.weight
|
|
|
210 |
|
211 |
def new_forward(self, input, task):
|
212 |
task_idx = adaptation_map[task] if task else None
|
213 |
+
if task_idx is not None:
|
214 |
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
215 |
else:
|
216 |
weights = self.weight
|
modeling_xlm_roberta.py
CHANGED
@@ -314,7 +314,7 @@ class XLMRobertaPooler(nn.Module):
|
|
314 |
# We "pool" the model by simply taking the hidden state corresponding
|
315 |
# to the first token.
|
316 |
lora_kwargs = {}
|
317 |
-
if task:
|
318 |
lora_kwargs['task'] = task
|
319 |
|
320 |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
@@ -551,7 +551,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
551 |
else:
|
552 |
range_iter = range(0, len(sentences), batch_size)
|
553 |
lora_kwargs = {}
|
554 |
-
if task:
|
555 |
lora_kwargs['task'] = task
|
556 |
for i in range_iter:
|
557 |
encoded_input = self.tokenizer(
|
|
|
314 |
# We "pool" the model by simply taking the hidden state corresponding
|
315 |
# to the first token.
|
316 |
lora_kwargs = {}
|
317 |
+
if task is not None:
|
318 |
lora_kwargs['task'] = task
|
319 |
|
320 |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
|
|
551 |
else:
|
552 |
range_iter = range(0, len(sentences), batch_size)
|
553 |
lora_kwargs = {}
|
554 |
+
if task is not None:
|
555 |
lora_kwargs['task'] = task
|
556 |
for i in range_iter:
|
557 |
encoded_input = self.tokenizer(
|