bwang0911 commited on
Commit
576592b
·
1 Parent(s): 648612e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -7
README.md CHANGED
@@ -10,10 +10,9 @@ license: apache-2.0
10
 
11
 
12
  <p align="center">
13
- <b>Task-oriented finetuning for better embeddings on neural search</b>
14
  </p>
15
 
16
- The text embedding suit trained by [Jina AI](https://github.com/jina-ai), [Finetuner team](https://github.com/jina-ai/finetuner).
17
 
18
  ## Intented Usage & Model Info
19
 
@@ -28,10 +27,10 @@ With a compact size of just 35 million parameters,
28
  the model enables lightning-fast inference while still delivering impressive performance.
29
  Additionally, we provide the following options:
30
 
31
- - jina-embedding-b-en-v1: 110 million parameters.
32
- - jina-embedding-l-en-v1: 800 million parameters.
33
- - jina-embedding-xl-en-v1: 3 billion parameters.
34
- - jina-embedding-xxl-en-v1: 11 billion parameters.
35
 
36
  ## Data & Parameters
37
 
@@ -39,4 +38,25 @@ More info will be released together with the technique report.
39
 
40
  ## Metrics
41
 
42
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
  <p align="center">
13
+ <b>The text embedding suit trained by [Jina AI](https://github.com/jina-ai), [Finetuner team](https://github.com/jina-ai/finetuner).</b>
14
  </p>
15
 
 
16
 
17
  ## Intented Usage & Model Info
18
 
 
27
  the model enables lightning-fast inference while still delivering impressive performance.
28
  Additionally, we provide the following options:
29
 
30
+ - `jina-embedding-b-en-v1`: 110 million parameters.
31
+ - `jina-embedding-l-en-v1`: 800 million parameters.
32
+ - `jina-embedding-xl-en-v1`: 3 billion parameters.
33
+ - `jina-embedding-xxl-en-v1`: 11 billion parameters.
34
 
35
  ## Data & Parameters
36
 
 
38
 
39
  ## Metrics
40
 
41
+ We compared the model against `all-minilm-l6-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
42
+
43
+ |FIELD1 |STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|param |context length|
44
+ |------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-------|---------|------|
45
+ |all-minilm-l6-v2 |0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |33m |256|
46
+ |all-mpnet--base-v2 |0.726|0.835|0.78 |0.857|0.8 |0.906|0.513 |0.875|0.656 |110m |256|
47
+ |ada-embedding-002 |0.698|0.833|0.761|0.861|0.86 |0.903|0.685 |0.876|0.726 |Unknown |8024|
48
+ |jina-embedding-small |0.738|0.781|0.732|0.833|0.785|0.859|0.471 |0.852|0.567 |35m |512|
49
+
50
+ For more tasks and metrics, please checkout [MTEB](https://huggingface.co/spaces/mteb/leaderboard) benchmark.
51
+
52
+ ## Usage
53
+
54
+ ```python
55
+ !pip install finetuner[text]
56
+
57
+ import finetuner
58
+
59
+
60
+ model = finetuner.get_model('jinaai/jina-embedding-s-en-v1')
61
+ embeddings = model.encode(['sentence 1', 'sentence 2'])
62
+ ```