jina-clip-implementation / modeling_clip.py
gmastrapas's picture
fix: various fixes
cdebfc7
raw
history blame
23.6 kB
# coding=utf-8
#
# Code mainly copied from:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py
# and adjusted for Jina CLIP
import base64
from functools import partial
from io import BytesIO
from typing import List, Optional, Tuple, Union
import numpy as np
import requests
import torch
import torch.nn.functional as f
import torch.utils.checkpoint
from PIL import Image
from torch import nn
from transformers import (
AutoImageProcessor,
AutoTokenizer,
BatchEncoding,
BatchFeature,
PreTrainedModel,
logging,
)
from transformers.models.clip.modeling_clip import (
CLIPOutput,
CLIPTextModelOutput,
CLIPVisionModelOutput,
clip_loss,
)
try:
from tqdm.autonotebook import trange
has_tqdm = True
except ImportError:
trange = None
has_tqdm = False
from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
from .eva_model import EVAVisionTransformer
from .hf_model import HFTextEncoder
from .rope_embeddings import VisionRotaryEmbeddingFast # noqa: F401
from .transform import ( # noqa: F401
OPENAI_DATASET_MEAN,
OPENAI_DATASET_STD,
image_transform,
)
logger = logging.get_logger(__name__)
""" Jina CLIP model implementation """
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor):
origtype = x.dtype
x = f.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(origtype)
def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder:
return HFTextEncoder(
model_name_or_path=config.hf_model_name_or_path,
output_dim=config.embed_dim,
default_instruction_task=config.default_instruction_task,
default_lora_task=config.default_lora_task,
pooler_type=config.pooler_type,
proj_type=config.proj_type,
proj_bias=config.proj_bias,
pretrained=False,
output_tokens=False,
trust_remote_code=True,
revision=None,
model_config_kwargs=config.hf_model_config_kwargs,
)
def _build_vision_tower(config: JinaCLIPVisionConfig) -> EVAVisionTransformer:
norm_layer = partial(LayerNorm, eps=1e-6)
if config.fused_layer_norm:
try:
from apex.normalization import FusedLayerNorm
norm_layer = partial(FusedLayerNorm, eps=1e-6)
except (ModuleNotFoundError, ImportError):
logger.warning('Please install apex to use fused layer norm, ignoring')
return EVAVisionTransformer(
img_size=config.image_size,
patch_size=config.patch_size,
num_classes=config.embed_dim,
use_mean_pooling=False,
init_values=config.ls_init_value,
patch_dropout=config.patch_dropout,
embed_dim=config.width,
depth=config.layers,
num_heads=config.width // config.head_width,
mlp_ratio=config.mlp_ratio,
qkv_bias=config.qkv_bias,
drop_path_rate=config.drop_path_rate,
norm_layer=norm_layer,
xattn=config.x_attention,
rope=config.rope_embeddings,
postnorm=config.post_norm,
pt_hw_seq_len=config.pt_hw_seq_len,
intp_freq=config.intp_freq,
naiveswiglu=config.naive_swiglu,
subln=config.subln,
proj_type=config.proj_type,
)
class JinaCLIPPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for
downloading and loading pretrained models.
"""
config_class = JinaCLIPConfig
base_model_prefix = 'clip'
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, JinaCLIPModel):
if isinstance(module.text_projection, nn.Linear):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module.text_projection, nn.Linear):
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
config_class = JinaCLIPTextConfig
def __init__(self, config: JinaCLIPTextConfig):
super().__init__(config)
self.text_model = _build_text_tower(config)
self.post_init()
def forward(
self,
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
return_dict: Optional[bool] = None,
use_lora: bool = False,
adapter_mask: Optional[torch.Tensor] = None,
task: Optional[str] = None,
*_,
**__,
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
feats = self.text_model(
x=x,
use_lora=use_lora,
adapter_mask=adapter_mask,
task=task,
)
out = CLIPTextModelOutput(text_embeds=feats)
return out if return_dict else out.to_tuple()
class JinaCLIPVisionModel(JinaCLIPPreTrainedModel):
config_class = JinaCLIPVisionConfig
main_input_name = 'pixel_values'
def __init__(self, config: JinaCLIPVisionConfig):
super().__init__(config)
self.vision_model = _build_vision_tower(config)
self.post_init()
def forward(
self,
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
return_dict: Optional[bool] = None,
*_,
**__,
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
x = (
pixel_values.pixel_values
if isinstance(pixel_values, BatchFeature)
else pixel_values
)
feats = self.vision_model(x=x)
out = CLIPVisionModelOutput(image_embeds=feats)
return out if return_dict else out.to_tuple()
class JinaCLIPModel(JinaCLIPPreTrainedModel):
config_class = JinaCLIPConfig
def __init__(self, config: JinaCLIPConfig):
super().__init__(config)
if not isinstance(config.text_config, JinaCLIPTextConfig):
raise ValueError(
'Attribute config.text_config is expected to be of type '
f'JinaCLIPTextConfig but is of type {type(config.text_config)}.'
)
if not isinstance(config.vision_config, JinaCLIPVisionConfig):
raise ValueError(
'Attribute config.vision_config is expected to be of type '
f'JinaCLIPVisionConfig but is of type {type(config.vision_config)}.'
)
text_config = config.text_config
vision_config = config.vision_config
if config.use_text_flash_attn is not None:
text_config.hf_model_config_kwargs['use_flash_attn'] = (
config.use_text_flash_attn
)
if config.use_vision_xformers is not None:
vision_config.x_attention = config.use_vision_xformers
self.add_projections = config.add_projections
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.embed_dim
self.vision_embed_dim = vision_config.embed_dim
self.text_model = _build_text_tower(text_config)
self.vision_model = _build_vision_tower(vision_config)
self.logit_scale = nn.Parameter(
torch.tensor(self.config.logit_scale_init_value)
)
if self.add_projections:
self.visual_projection = nn.Linear(
self.vision_embed_dim, self.projection_dim, bias=False
)
self.text_projection = nn.Linear(
self.text_embed_dim, self.projection_dim, bias=False
)
else:
self.visual_projection = nn.Identity()
self.text_projection = nn.Identity()
self.tokenizer = None
self.preprocess = None
self.post_init()
def get_tokenizer(self):
if not self.tokenizer:
self.tokenizer = AutoTokenizer.from_pretrained(
self.config._name_or_path, trust_remote_code=True
)
return self.tokenizer
def get_preprocess(self):
if not self.preprocess:
self.preprocess = AutoImageProcessor.from_pretrained(
self.config._name_or_path, trust_remote_code=True
)
return self.preprocess
def get_text_features(
self,
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
adapter_mask: Optional[torch.Tensor] = None,
*_,
**__,
) -> torch.FloatTensor:
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
return self.text_projection(self.text_model(x=x, adapter_mask=adapter_mask))
def get_image_features(
self,
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
*_,
**__,
) -> torch.FloatTensor:
x = (
pixel_values.pixel_values
if isinstance(pixel_values, BatchFeature)
else pixel_values
)
return self.visual_projection(self.vision_model(x=x))
def _truncate_embeddings(self, embeddings: torch.Tensor, truncate_dim: int):
if not self.config.matryoshka_dimensions:
logger.warning(
'Model is not trained using Matryoshka Representation Learning, '
'truncating embeddings will not work optimally.'
)
return embeddings[:, :truncate_dim]
@staticmethod
def _decode_image_data(image_data_str: str) -> Image:
header, data = image_data_str.split(',', 1)
image_data = base64.b64decode(data)
return Image.open(BytesIO(image_data))
@torch.inference_mode()
def encode_image(
self,
images: Union[str, List[Union[str, 'Image.Image']]],
batch_size: int = 32,
show_progress_bar: Optional[bool] = None,
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: Optional[torch.device] = None,
normalize_embeddings: bool = True,
truncate_dim: Optional[int] = None,
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
"""
Computes image embeddings
Args:
images(`str` or `List[Union[str, Image.Image]]`):
Image paths, URLs, PIL images, or data:image/ strings to be encoded
batch_size(`int`, *optional*, defaults to 32):
Batch size for the computation
show_progress_bar(`bool`, *optional*, defaults to None):
Show a progress bar when encoding images. If set to None, progress bar
is only shown when `logger.level == logging.INFO` or
`logger.level == logging.DEBUG`
convert_to_numpy(`bool`, *optional*, defaults to True):
If true, the output is a list of numpy vectors. Else, it is a list of
pytorch tensors
convert_to_tensor(`bool`, *optional*, defaults to False):
If true, you get one large tensor as return. Overwrites any setting
from convert_to_numpy
device(`torch.device`, *optional*, defaults to None):
Which torch.device to use for the computation
normalize_embeddings(`bool`, *optional*, defaults to False):
If set to true, returned vectors will have length 1. In that case,
the faster dot-product (util.dot_score) instead of cosine similarity
can be used
truncate_dim(`int`, *optional*, defaults to None):
The dimension to truncate sentence embeddings to. If set to `None`
no truncation is performed
Returns:
By default, a list of tensors is returned. If convert_to_tensor, a stacked
tensor is returned. If convert_to_numpy, a numpy matrix is returned
"""
_is_training = self.training
self.eval()
self.preprocess = self.get_preprocess()
all_embeddings = []
if show_progress_bar is None:
show_progress_bar = (
logger.getEffectiveLevel() == logging.INFO
or logger.getEffectiveLevel() == logging.DEBUG
)
if convert_to_tensor:
convert_to_numpy = False
_input_was_single_img = False
if isinstance(images, str) or not hasattr(images, '__len__'):
images = [images]
_input_was_single_img = True
if device is not None:
self.to(device)
_permutation = np.argsort([-len(str(i)) for i in images])
_inverse_permutation = np.argsort(_permutation)
images = [images[idx] for idx in _permutation]
if has_tqdm:
range_iter = trange(
0,
len(images),
batch_size,
desc='Encoding',
disable=not show_progress_bar,
)
else:
range_iter = range(0, len(images), batch_size)
truncate_dim = truncate_dim or self.config.truncate_dim
for i in range_iter:
_processed_images = []
for img in images[i: i + batch_size]:
if isinstance(img, str):
if img.startswith('http'):
response = requests.get(img)
image = Image.open(BytesIO(response.content)).convert('RGB')
elif img.startswith('data:image/'):
image = self._decode_image_data(img).convert('RGB')
else:
image = Image.open(img).convert('RGB')
elif isinstance(img, Image.Image):
image = img.convert('RGB')
else:
raise ValueError('Unsupported image format')
_processed_images.append(image)
pixelvals = self.preprocess(_processed_images)
pixelvals = pixelvals.to(self.device)
embeddings = self.get_image_features(pixelvals)
if truncate_dim:
embeddings = self.truncate_embeddings(embeddings, truncate_dim)
if normalize_embeddings:
embeddings = f.normalize(embeddings, p=2, dim=1)
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray(
[emb.to(torch.float32).numpy() for emb in all_embeddings]
)
if _input_was_single_img:
all_embeddings = all_embeddings[0]
self.train(_is_training)
return all_embeddings
@torch.inference_mode()
def encode_text(
self,
sentences: Union[str, List[str]],
task: Optional[str] = None,
batch_size: int = 32,
show_progress_bar: Optional[bool] = None,
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: Optional[torch.device] = None,
normalize_embeddings: bool = True,
truncate_dim: Optional[int] = None,
**tokenizer_kwargs,
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
"""
Computes text embeddings
Args:
sentences(`str` or `List[str]`):
Sentence or sentences to be encoded
task(`str`, *optional*, defaults to `None`):
Specifies the task for which the encoding is intended. If `task` is
not provided, all LoRA adapters are disabled, and the model reverts
to its original, general-purpose weights
batch_size(`int`, *optional*, defaults to 32):
Batch size for the computation
show_progress_bar(`bool`, *optional*, defaults to None):
Show a progress bar when encoding sentences. If set to None, progress
bar is only shown when `logger.level == logging.INFO` or
`logger.level == logging.DEBUG`
convert_to_numpy(`bool`, *optional*, defaults to True):
If true, the output is a list of numpy vectors. Else, it is a list of
pytorch tensors
convert_to_tensor(`bool`, *optional*, defaults to False):
If true, you get one large tensor as return. Overwrites any setting
from convert_to_numpy
device(`torch.device`, *optional*, defaults to None):
Which torch.device to use for the computation
normalize_embeddings(`bool`, *optional*, defaults to False):
If set to true, returned vectors will have length 1. In that case,
the faster dot-product (util.dot_score) instead of cosine similarity
can be used
truncate_dim(`int`, *optional*, defaults to None):
The dimension to truncate sentence embeddings to. If set to `None`
no truncation is performed
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
Keyword arguments for the tokenizer
Returns:
By default, a list of tensors is returned. If convert_to_tensor, a stacked
tensor is returned. If convert_to_numpy, a numpy matrix is returned.
"""
_is_training = self.training
self.eval()
all_embeddings = []
self.tokenizer = self.get_tokenizer()
if show_progress_bar is None:
show_progress_bar = (
logger.getEffectiveLevel() == logging.INFO
or logger.getEffectiveLevel() == logging.DEBUG
)
if convert_to_tensor:
convert_to_numpy = False
_input_was_string = False
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
sentences = [sentences]
_input_was_string = True
if device is not None:
self.to(device)
_permutation = np.argsort([-len(i) for i in sentences])
_inverse_permutation = np.argsort(_permutation)
sentences = [sentences[idx] for idx in _permutation]
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512)
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
if has_tqdm:
range_iter = trange(
0,
len(sentences),
batch_size,
desc='Encoding',
disable=not show_progress_bar,
)
else:
range_iter = range(0, len(sentences), batch_size)
truncate_dim = truncate_dim or self.config.truncate_dim
instruction = self.text_model.default_instruction
loraid = self.text_model.default_loraid
if task:
_selected_instruction = self.text_model.get_instruction_from_task(task)
if _selected_instruction is not None:
instruction = _selected_instruction
_selected_loraid = self.text_model.get_loraid_from_task(task)
if _selected_loraid is not None:
loraid = _selected_loraid
if instruction is not None:
sentences = [instruction + sentence for sentence in sentences]
adapter_mask = None
if loraid is not None:
nexamples = 1 if isinstance(sentences, str) else len(sentences)
adapter_mask = torch.full(
(nexamples,), loraid, dtype=torch.int32, device=self.device
)
for i in range_iter:
tokens = self.tokenizer(
sentences[i: i + batch_size],
return_tensors='pt',
**tokenizer_kwargs,
).to(self.device)
embeddings = self.get_text_features(
input_ids=tokens, adapter_mask=adapter_mask
)
if truncate_dim:
embeddings = self.truncate_embeddings(embeddings, truncate_dim)
if normalize_embeddings:
embeddings = f.normalize(embeddings, p=2, dim=1)
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray(
[emb.to(torch.float32).numpy() for emb in all_embeddings]
)
if _input_was_string:
all_embeddings = all_embeddings[0]
self.train(_is_training)
return all_embeddings
def forward(
self,
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
adapter_mask: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
return_loss: Optional[bool] = None,
*_,
**__,
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPOutput]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
image_embeds = self.get_image_features(pixel_values=pixel_values)
text_embeds = self.get_text_features(
input_ids=input_ids, adapter_mask=adapter_mask
)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if not return_dict:
output = (
logits_per_image,
logits_per_text,
text_embeds,
image_embeds,
None,
None,
)
return ((loss,) + output) if loss is not None else output
return CLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=None,
vision_model_output=None,
)