feat: removed tokenizer
Browse files- tokenizer.py +0 -107
tokenizer.py
DELETED
@@ -1,107 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from enum import IntEnum
|
3 |
-
import numpy as np
|
4 |
-
from transformers import RobertaTokenizer, BatchEncoding, RobertaTokenizerFast
|
5 |
-
import warnings
|
6 |
-
|
7 |
-
|
8 |
-
def get_tokenizer(parent_class):
|
9 |
-
class TokenizerClass(parent_class):
|
10 |
-
class TaskTypes(IntEnum):
|
11 |
-
NULL = 0
|
12 |
-
QUERY = 1
|
13 |
-
DOCUMENT = 2
|
14 |
-
STS = 3
|
15 |
-
CLUSTERING = 4
|
16 |
-
CLASSIFICATION = 5
|
17 |
-
|
18 |
-
def __init__(self, *args, **kwargs):
|
19 |
-
"""
|
20 |
-
This class dynamically extends a given tokenizer class from the HF
|
21 |
-
Transformers library (RobertaTokenizer or RobertaTokenizerFast).
|
22 |
-
The task_type_ids are used to pass instruction information to the model.
|
23 |
-
A task_type should either be an integer or a sequence of integers with the same
|
24 |
-
length as the batch size.
|
25 |
-
"""
|
26 |
-
super().__init__(*args, **kwargs)
|
27 |
-
|
28 |
-
def __call__(self, *args, task_type: TaskTypes = None, **kwargs):
|
29 |
-
batch_encoding = super().__call__(*args, **kwargs)
|
30 |
-
if task_type is not None:
|
31 |
-
batch_encoding = self._add_task_type_ids(
|
32 |
-
batch_encoding, task_type, kwargs.get('return_tensors')
|
33 |
-
)
|
34 |
-
return batch_encoding
|
35 |
-
|
36 |
-
def _batch_encode_plus(self, *args, task_type: TaskTypes = None, **kwargs):
|
37 |
-
batch_encoding = super()._batch_encode_plus(*args, **kwargs)
|
38 |
-
if task_type is not None:
|
39 |
-
batch_encoding = self._add_task_type_ids(
|
40 |
-
batch_encoding, task_type, kwargs.get('return_tensors')
|
41 |
-
)
|
42 |
-
return batch_encoding
|
43 |
-
|
44 |
-
def _encode_plus(self, *args, task_type: TaskTypes = None, **kwargs):
|
45 |
-
batch_encoding = super()._encode_plus(*args, **kwargs)
|
46 |
-
if task_type is not None:
|
47 |
-
batch_encoding = self._add_task_type_ids(
|
48 |
-
batch_encoding, task_type, kwargs.get('return_tensors')
|
49 |
-
)
|
50 |
-
return batch_encoding
|
51 |
-
|
52 |
-
@classmethod
|
53 |
-
def _add_task_type_ids(
|
54 |
-
cls, batch_encoding: BatchEncoding, task_type: TaskTypes, tensor_type: str
|
55 |
-
):
|
56 |
-
return BatchEncoding(
|
57 |
-
{
|
58 |
-
'task_type_ids': cls._get_task_type_ids(batch_encoding, task_type),
|
59 |
-
**batch_encoding,
|
60 |
-
},
|
61 |
-
tensor_type=tensor_type,
|
62 |
-
)
|
63 |
-
|
64 |
-
@staticmethod
|
65 |
-
def _get_task_type_ids(batch_encoding: BatchEncoding, task_type: TaskTypes):
|
66 |
-
def apply_task_type(m, x):
|
67 |
-
x = torch.tensor(x)
|
68 |
-
assert (
|
69 |
-
len(x.shape) == 0 or x.shape[0] == m.shape[0]
|
70 |
-
), 'The shape of task_type does not match the size of the batch.'
|
71 |
-
return m * x if len(x.shape) == 0 else m * x[:, None]
|
72 |
-
|
73 |
-
if isinstance(batch_encoding['input_ids'], torch.Tensor):
|
74 |
-
shape = batch_encoding['input_ids'].shape
|
75 |
-
return apply_task_type(torch.ones(shape, dtype=torch.long), task_type)
|
76 |
-
else:
|
77 |
-
try:
|
78 |
-
shape = torch.tensor(batch_encoding['input_ids']).shape
|
79 |
-
except:
|
80 |
-
raise ValueError(
|
81 |
-
"Unable to create tensor, you should probably "
|
82 |
-
"activate truncation and/or padding with "
|
83 |
-
"'padding=True' 'truncation=True' to have batched "
|
84 |
-
"tensors with the same length."
|
85 |
-
)
|
86 |
-
if isinstance(batch_encoding['input_ids'], list):
|
87 |
-
return (
|
88 |
-
apply_task_type(torch.ones(shape, dtype=torch.long), task_type)
|
89 |
-
).tolist()
|
90 |
-
elif isinstance(batch_encoding['input_ids'], np.array):
|
91 |
-
return (
|
92 |
-
apply_task_type(torch.ones(shape, dtype=torch.long), task_type)
|
93 |
-
).numpy()
|
94 |
-
else:
|
95 |
-
warnings.warn(
|
96 |
-
'input_ids is not a torch tensor, numpy array, or list. Returning torch tensor'
|
97 |
-
)
|
98 |
-
return apply_task_type(
|
99 |
-
torch.ones(shape, dtype=torch.long), task_type
|
100 |
-
)
|
101 |
-
|
102 |
-
return TokenizerClass
|
103 |
-
|
104 |
-
|
105 |
-
JinaTokenizer = get_tokenizer(RobertaTokenizer)
|
106 |
-
JinaTokenizerFast = get_tokenizer(RobertaTokenizerFast)
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|