jupyterjazz
commited on
Commit
•
12000a5
1
Parent(s):
ae4c28c
feat: mcls
Browse filesSigned-off-by: jupyterjazz <saba.sturua@jina.ai>
- tokenizer.py +69 -37
tokenizer.py
CHANGED
@@ -1,62 +1,94 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from transformers import RobertaTokenizer, BatchEncoding
|
4 |
import warnings
|
5 |
|
|
|
|
|
|
|
|
|
6 |
|
7 |
class JinaTokenizer(RobertaTokenizer):
|
8 |
-
def __init__(
|
|
|
|
|
9 |
super().__init__(*args, **kwargs)
|
10 |
self.task_type_vocab_size = task_type_vocab_size
|
|
|
11 |
|
12 |
def __call__(self, *args, task_type=None, **kwargs):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
)
|
21 |
-
return batch_encoding
|
22 |
|
23 |
-
def
|
24 |
-
|
25 |
-
if
|
26 |
-
|
27 |
-
|
28 |
-
'task_type_ids': self._get_task_type_ids(batch_encoding, task_type),
|
29 |
-
**batch_encoding,
|
30 |
-
},
|
31 |
-
tensor_type=kwargs.get('return_tensors'),
|
32 |
)
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
def _encode_plus(self, *args, task_type=None, **kwargs):
|
36 |
-
batch_encoding = super()._encode_plus(*args, **kwargs)
|
37 |
if task_type is not None:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
@staticmethod
|
48 |
def _get_task_type_ids(batch_encoding: BatchEncoding, task_type: int):
|
49 |
-
if isinstance(batch_encoding[
|
50 |
-
shape = batch_encoding[
|
51 |
return torch.ones(shape, dtype=torch.long) * task_type
|
52 |
else:
|
53 |
-
shape = torch.tensor(batch_encoding[
|
54 |
-
if isinstance(batch_encoding[
|
55 |
return (torch.ones(shape, dtype=torch.long) * task_type).tolist()
|
56 |
-
elif isinstance(batch_encoding[
|
57 |
return (torch.ones(shape, dtype=torch.long) * task_type).numpy()
|
58 |
else:
|
59 |
warnings.warn(
|
60 |
-
|
61 |
)
|
62 |
return torch.ones(shape, dtype=torch.long) * task_type
|
|
|
|
|
|
|
|
|
1 |
import warnings
|
2 |
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import BatchEncoding, RobertaTokenizer
|
6 |
+
|
7 |
|
8 |
class JinaTokenizer(RobertaTokenizer):
|
9 |
+
def __init__(
|
10 |
+
self, *args, task_type_vocab_size=6, cls_token_interval=None, **kwargs
|
11 |
+
):
|
12 |
super().__init__(*args, **kwargs)
|
13 |
self.task_type_vocab_size = task_type_vocab_size
|
14 |
+
self.cls_token_interval = cls_token_interval
|
15 |
|
16 |
def __call__(self, *args, task_type=None, **kwargs):
|
17 |
+
kwargs["task_type"] = task_type
|
18 |
+
return super().__call__(*args, **kwargs)
|
19 |
+
|
20 |
+
def _encode_plus(self, *args, **kwargs):
|
21 |
+
return self._process_encoding(super()._encode_plus(*args, **kwargs), **kwargs)
|
22 |
+
|
23 |
+
def _batch_encode_plus(self, *args, **kwargs):
|
24 |
+
return self._process_encoding(
|
25 |
+
super()._batch_encode_plus(*args, **kwargs), **kwargs
|
26 |
)
|
|
|
27 |
|
28 |
+
def _process_encoding(self, batch_encoding: BatchEncoding, **kwargs):
|
29 |
+
task_type = kwargs.get("task_type")
|
30 |
+
if self.cls_token_interval is not None:
|
31 |
+
modified_input_ids, modified_attention_mask = self._insert_cls_tokens(
|
32 |
+
batch_encoding
|
|
|
|
|
|
|
|
|
33 |
)
|
34 |
+
batch_encoding["input_ids"] = modified_input_ids
|
35 |
+
if "attention_mask" in batch_encoding:
|
36 |
+
print(batch_encoding["attention_mask"])
|
37 |
+
batch_encoding["attention_mask"] = modified_attention_mask
|
38 |
|
|
|
|
|
39 |
if task_type is not None:
|
40 |
+
task_type_ids = self._get_task_type_ids(batch_encoding, task_type)
|
41 |
+
batch_encoding["task_type_ids"] = task_type_ids
|
42 |
+
|
43 |
+
return BatchEncoding(batch_encoding, tensor_type=kwargs.get("return_tensors"))
|
44 |
+
|
45 |
+
def _insert_cls_tokens(self, batch_encoding: BatchEncoding):
|
46 |
+
cls_token_id = self.cls_token_id
|
47 |
+
new_input_ids = []
|
48 |
+
new_attention_masks = []
|
49 |
+
|
50 |
+
sequences = batch_encoding["input_ids"].tolist()
|
51 |
+
original_attention_masks = batch_encoding["attention_mask"].tolist()
|
52 |
+
|
53 |
+
for seq_index, sequence in enumerate(sequences):
|
54 |
+
original_sequence_length = sum(original_attention_masks[seq_index])
|
55 |
+
num_cls_tokens_to_add = (
|
56 |
+
original_sequence_length - 1
|
57 |
+
) // self.cls_token_interval
|
58 |
+
new_sequence_length = original_sequence_length + num_cls_tokens_to_add
|
59 |
+
|
60 |
+
modified_sequence = [sequence[0]]
|
61 |
+
for i in range(1, len(sequence), self.cls_token_interval):
|
62 |
+
chunk = sequence[i : i + self.cls_token_interval]
|
63 |
+
modified_sequence.extend(chunk)
|
64 |
+
|
65 |
+
if i + self.cls_token_interval < len(sequence):
|
66 |
+
modified_sequence.append(cls_token_id)
|
67 |
+
|
68 |
+
new_input_ids.append(modified_sequence)
|
69 |
+
new_attention_mask = [1] * new_sequence_length + [0] * (
|
70 |
+
len(modified_sequence) - new_sequence_length
|
71 |
)
|
72 |
+
new_attention_masks.append(new_attention_mask)
|
73 |
+
|
74 |
+
new_input_ids = torch.tensor(new_input_ids, dtype=torch.long)
|
75 |
+
new_attention_masks = torch.tensor(new_attention_masks, dtype=torch.long)
|
76 |
+
|
77 |
+
return new_input_ids, new_attention_masks
|
78 |
|
79 |
@staticmethod
|
80 |
def _get_task_type_ids(batch_encoding: BatchEncoding, task_type: int):
|
81 |
+
if isinstance(batch_encoding["input_ids"], torch.Tensor):
|
82 |
+
shape = batch_encoding["input_ids"].shape
|
83 |
return torch.ones(shape, dtype=torch.long) * task_type
|
84 |
else:
|
85 |
+
shape = torch.tensor(batch_encoding["input_ids"]).shape
|
86 |
+
if isinstance(batch_encoding["input_ids"], list):
|
87 |
return (torch.ones(shape, dtype=torch.long) * task_type).tolist()
|
88 |
+
elif isinstance(batch_encoding["input_ids"], np.array):
|
89 |
return (torch.ones(shape, dtype=torch.long) * task_type).numpy()
|
90 |
else:
|
91 |
warnings.warn(
|
92 |
+
"input_ids is not a torch tensor, numpy array, or list. Returning torch tensor"
|
93 |
)
|
94 |
return torch.ones(shape, dtype=torch.long) * task_type
|