|
|
|
|
|
"""" |
|
The implementation was adopted from |
|
https://github.com/Dao-AILab/flash-attention/blob/43950dda456e095969d842fca7a73c5bfe3cecd0/flash_attn/models/bert.py |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
|
|
class GPT2Embeddings(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim, |
|
vocab_size, |
|
max_position_embeddings, |
|
padding_idx=None, |
|
word_embed_proj_dim=None, |
|
device=None, |
|
dtype=None, |
|
): |
|
""" |
|
If max_position_embeddings <= 0, there's no position embeddings |
|
If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension |
|
the project up to embed_dim |
|
""" |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
if word_embed_proj_dim is None: |
|
self.word_embeddings = nn.Embedding( |
|
vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs |
|
) |
|
self.project_in = None |
|
else: |
|
self.word_embeddings = nn.Embedding( |
|
vocab_size, word_embed_proj_dim, padding_idx=padding_idx, **factory_kwargs |
|
) |
|
self.project_in = nn.Linear( |
|
word_embed_proj_dim, embed_dim, bias=False, **factory_kwargs |
|
) |
|
self.max_position_embeddings = max_position_embeddings |
|
if self.max_position_embeddings > 0: |
|
self.position_embeddings = nn.Embedding( |
|
max_position_embeddings, embed_dim, **factory_kwargs |
|
) |
|
|
|
def forward(self, input_ids, position_ids=None): |
|
""" |
|
input_ids: (batch, seqlen) |
|
position_ids: (batch, seqlen) |
|
""" |
|
batch_size, seqlen = input_ids.shape |
|
embeddings = self.word_embeddings(input_ids) |
|
if self.project_in is not None: |
|
embeddings = self.project_in(embeddings) |
|
if self.max_position_embeddings > 0: |
|
if position_ids is None: |
|
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
return embeddings |
|
|
|
|
|
class BertEmbeddings(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim, |
|
vocab_size, |
|
max_position_embeddings, |
|
type_vocab_size, |
|
padding_idx=None, |
|
device=None, |
|
dtype=None, |
|
): |
|
""" |
|
If max_position_embeddings <= 0, there's no position embeddings |
|
If type_vocab_size <= 0, there's no token type embeddings |
|
""" |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs |
|
) |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
if self.max_position_embeddings > 0: |
|
self.position_embeddings = nn.Embedding( |
|
max_position_embeddings, embed_dim, **factory_kwargs |
|
) |
|
if self.type_vocab_size > 0: |
|
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs) |
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None): |
|
""" |
|
input_ids: (batch, seqlen) |
|
position_ids: (batch, seqlen) |
|
token_type_ids: (batch, seqlen) |
|
""" |
|
batch_size, seqlen = input_ids.shape |
|
embeddings = self.word_embeddings(input_ids) |
|
if self.max_position_embeddings > 0: |
|
if position_ids is None: |
|
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = embeddings + position_embeddings |
|
if self.type_vocab_size > 0: |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
embeddings = embeddings + token_type_embeddings |
|
return embeddings |
|
|
|
|
|
class VocabParallelEmbedding(nn.Embedding): |
|
def __init__(self, num_embeddings, *args, process_group=None, padding_idx=None, **kwargs): |
|
self.process_group = process_group |
|
if process_group is not None: |
|
world_size = torch.distributed.get_world_size(process_group) |
|
if num_embeddings % world_size != 0: |
|
raise ValueError( |
|
f"num_embeddings ({num_embeddings}) must be divisible by " |
|
f"world_size ({world_size})" |
|
) |
|
if world_size > 1 and padding_idx is not None: |
|
raise RuntimeError("ParallelEmbedding does not support padding_idx") |
|
else: |
|
world_size = 1 |
|
super().__init__(num_embeddings // world_size, *args, padding_idx=padding_idx, **kwargs) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
if self.process_group is None: |
|
return super().forward(input) |
|
else: |
|
rank = torch.distributed.get_rank(self.process_group) |
|
vocab_size = self.num_embeddings |
|
vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size |
|
|
|
input_ids_mask = (input < vocab_start_index) | (input >= vocab_end_index) |
|
input = input - vocab_start_index |
|
input[input_ids_mask] = 0 |
|
embeddings = super().forward(input) |
|
embeddings[input_ids_mask] = 0.0 |
|
return embeddings |
|
|
|
|
|
class ColumnParallelEmbedding(nn.Embedding): |
|
def __init__(self, num_embeddings, embedding_dim, *args, process_group=None, **kwargs): |
|
self.process_group = process_group |
|
if process_group is not None: |
|
world_size = torch.distributed.get_world_size(process_group) |
|
if embedding_dim % world_size != 0: |
|
raise ValueError( |
|
f"embedding_dim ({embedding_dim}) must be divisible by " |
|
f"world_size ({world_size})" |
|
) |
|
else: |
|
world_size = 1 |
|
super().__init__(num_embeddings, embedding_dim // world_size, *args, **kwargs) |
|
|
|
|
|
|