jimregan's picture
Update README.md
d9b6130
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
language: ga
tags:
  - generated_from_trainer
  - irish
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-irish-cased-v1-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann
          type: wikiann
          args: ga
        metrics:
          - name: Precision
            type: precision
            value: 0.8190601668862538
          - name: Recall
            type: recall
            value: 0.8363228699551569
          - name: F1
            type: f1
            value: 0.8276015087641446
          - name: Accuracy
            type: accuracy
            value: 0.9306559069156423
widget:
  - text: Saolaíodh Pádraic Ó Conaire i nGaillimh sa bhliain 1882.

bert-base-irish-cased-v1-finetuned-ner

This model is a fine-tuned version of DCU-NLP/bert-base-irish-cased-v1 on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2468
  • Precision: 0.8191
  • Recall: 0.8363
  • F1: 0.8276
  • Accuracy: 0.9307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 63 0.4902 0.5579 0.5269 0.5420 0.8458
No log 2.0 126 0.3227 0.7169 0.7417 0.7291 0.8991
No log 3.0 189 0.2720 0.7895 0.7839 0.7867 0.9186
No log 4.0 252 0.2585 0.8128 0.8296 0.8211 0.9264
No log 5.0 315 0.2468 0.8191 0.8363 0.8276 0.9307

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu111
  • Datasets 1.16.1
  • Tokenizers 0.10.3