Jiazheng Li
init push
a57f764
|
raw
history blame
3.51 kB
metadata
license: other
library_name: peft
tags:
  - llama-factory
  - lora
  - generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
  - name: sft_trained_woaqa_llama3_dpo
    results: []

sft_trained_woaqa_llama3_dpo

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the sft_wo_aqa_pref dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0569
  • Rewards/chosen: 9.0148
  • Rewards/rejected: 7.8220
  • Rewards/accuracies: 0.6667
  • Rewards/margins: 1.1928
  • Logps/rejected: -180.5298
  • Logps/chosen: -151.5047
  • Logits/rejected: -1.4439
  • Logits/chosen: -1.4397

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 0.1
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.3287 0.33 200 1.8699 9.9343 9.1282 0.6312 0.8061 -167.4677 -142.3102 -1.1863 -1.1862
1.1821 0.67 400 1.9729 9.9379 9.2024 0.6113 0.7354 -166.7256 -142.2745 -1.2732 -1.2718
0.9116 1.0 600 1.9455 9.7997 8.9466 0.6482 0.8531 -169.2835 -143.6562 -1.3527 -1.3510
0.8412 1.33 800 2.0041 9.5449 8.5167 0.6397 1.0282 -173.5831 -146.2043 -1.4206 -1.4179
0.7345 1.67 1000 2.0659 9.1494 8.1514 0.6426 0.9980 -177.2357 -150.1593 -1.4325 -1.4290
0.6609 2.0 1200 2.0321 9.0327 7.8126 0.6681 1.2200 -180.6237 -151.3265 -1.4359 -1.4321
0.6768 2.33 1400 2.0313 9.1007 7.8929 0.6709 1.2079 -179.8211 -150.6457 -1.4472 -1.4432
0.615 2.67 1600 2.0515 9.0972 7.9582 0.6624 1.1390 -179.1680 -150.6812 -1.4413 -1.4370

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2