metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: chinese-address-ner
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.975825946817083
base_model: hfl/chinese-roberta-wwm-ext
chinese-address-ner
This model is a fine-tuned version of hfl/chinese-roberta-wwm-ext on an unkown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1080
- Precision: 0.9664
- Recall: 0.9774
- F1: 0.9719
- Accuracy: 0.9758
Model description
输入一串地址中文信息,比如快递单:北京市海淀区西北旺东路10号院(马连洼街道西北旺社区东北方向)
,按照行政级别(总有 7 级)抽取地址信息,返回每个 token 的类别。具体类别含义表示如下:
返回类别 | BIO 体系 | 解释 |
---|---|---|
LABEL_0 | O | 忽略信息 |
LABEL_1 | B-A1 | 第一级地址(头) |
LABEL_2 | I-A1 | 第一级地址(其余部分) |
... | ... | ... |
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 50
- eval_batch_size: 50
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.5055 | 1.0 | 7 | 1.6719 | 0.1977 | 0.2604 | 0.2248 | 0.5649 |
1.837 | 2.0 | 14 | 1.0719 | 0.4676 | 0.6 | 0.5256 | 0.7421 |
1.0661 | 3.0 | 21 | 0.7306 | 0.6266 | 0.7472 | 0.6816 | 0.8106 |
0.8373 | 4.0 | 28 | 0.5197 | 0.6456 | 0.8113 | 0.7191 | 0.8614 |
0.522 | 5.0 | 35 | 0.3830 | 0.7667 | 0.8679 | 0.8142 | 0.9001 |
0.4295 | 6.0 | 42 | 0.3104 | 0.8138 | 0.8906 | 0.8505 | 0.9178 |
0.3483 | 7.0 | 49 | 0.2453 | 0.8462 | 0.9132 | 0.8784 | 0.9404 |
0.2471 | 8.0 | 56 | 0.2081 | 0.8403 | 0.9132 | 0.8752 | 0.9428 |
0.2299 | 9.0 | 63 | 0.1979 | 0.8419 | 0.9245 | 0.8813 | 0.9420 |
0.1761 | 10.0 | 70 | 0.1823 | 0.8830 | 0.9396 | 0.9104 | 0.9500 |
0.1434 | 11.0 | 77 | 0.1480 | 0.9036 | 0.9547 | 0.9284 | 0.9629 |
0.134 | 12.0 | 84 | 0.1341 | 0.9173 | 0.9623 | 0.9392 | 0.9678 |
0.128 | 13.0 | 91 | 0.1365 | 0.9375 | 0.9623 | 0.9497 | 0.9694 |
0.0824 | 14.0 | 98 | 0.1159 | 0.9557 | 0.9774 | 0.9664 | 0.9734 |
0.0744 | 15.0 | 105 | 0.1092 | 0.9591 | 0.9736 | 0.9663 | 0.9766 |
0.0569 | 16.0 | 112 | 0.1117 | 0.9556 | 0.9736 | 0.9645 | 0.9742 |
0.0559 | 17.0 | 119 | 0.1040 | 0.9628 | 0.9774 | 0.9700 | 0.9790 |
0.0456 | 18.0 | 126 | 0.1052 | 0.9593 | 0.9774 | 0.9682 | 0.9782 |
0.0405 | 19.0 | 133 | 0.1133 | 0.9590 | 0.9698 | 0.9644 | 0.9718 |
0.0315 | 20.0 | 140 | 0.1060 | 0.9591 | 0.9736 | 0.9663 | 0.9750 |
0.0262 | 21.0 | 147 | 0.1087 | 0.9554 | 0.9698 | 0.9625 | 0.9718 |
0.0338 | 22.0 | 154 | 0.1183 | 0.9625 | 0.9698 | 0.9662 | 0.9726 |
0.0225 | 23.0 | 161 | 0.1080 | 0.9664 | 0.9774 | 0.9719 | 0.9758 |
0.028 | 24.0 | 168 | 0.1057 | 0.9591 | 0.9736 | 0.9663 | 0.9742 |
0.0202 | 25.0 | 175 | 0.1062 | 0.9628 | 0.9774 | 0.9700 | 0.9766 |
0.0168 | 26.0 | 182 | 0.1097 | 0.9664 | 0.9774 | 0.9719 | 0.9758 |
0.0173 | 27.0 | 189 | 0.1093 | 0.9628 | 0.9774 | 0.9700 | 0.9774 |
0.0151 | 28.0 | 196 | 0.1162 | 0.9628 | 0.9774 | 0.9700 | 0.9766 |
0.0135 | 29.0 | 203 | 0.1126 | 0.9483 | 0.9698 | 0.9590 | 0.9758 |
0.0179 | 30.0 | 210 | 0.1100 | 0.9449 | 0.9698 | 0.9572 | 0.9774 |
0.0161 | 31.0 | 217 | 0.1098 | 0.9449 | 0.9698 | 0.9572 | 0.9766 |
0.0158 | 32.0 | 224 | 0.1191 | 0.9483 | 0.9698 | 0.9590 | 0.9734 |
0.0151 | 33.0 | 231 | 0.1058 | 0.9483 | 0.9698 | 0.9590 | 0.9750 |
0.0121 | 34.0 | 238 | 0.0990 | 0.9593 | 0.9774 | 0.9682 | 0.9790 |
0.0092 | 35.0 | 245 | 0.1128 | 0.9519 | 0.9698 | 0.9607 | 0.9774 |
0.0097 | 36.0 | 252 | 0.1181 | 0.9627 | 0.9736 | 0.9681 | 0.9766 |
0.0118 | 37.0 | 259 | 0.1185 | 0.9591 | 0.9736 | 0.9663 | 0.9782 |
0.0118 | 38.0 | 266 | 0.1021 | 0.9557 | 0.9774 | 0.9664 | 0.9823 |
0.0099 | 39.0 | 273 | 0.1000 | 0.9559 | 0.9811 | 0.9683 | 0.9815 |
0.0102 | 40.0 | 280 | 0.1025 | 0.9559 | 0.9811 | 0.9683 | 0.9815 |
0.0068 | 41.0 | 287 | 0.1080 | 0.9522 | 0.9774 | 0.9646 | 0.9807 |
0.0105 | 42.0 | 294 | 0.1157 | 0.9449 | 0.9698 | 0.9572 | 0.9766 |
0.0083 | 43.0 | 301 | 0.1207 | 0.9380 | 0.9698 | 0.9536 | 0.9766 |
0.0077 | 44.0 | 308 | 0.1208 | 0.9483 | 0.9698 | 0.9590 | 0.9766 |
0.0077 | 45.0 | 315 | 0.1176 | 0.9483 | 0.9698 | 0.9590 | 0.9774 |
0.0071 | 46.0 | 322 | 0.1137 | 0.9483 | 0.9698 | 0.9590 | 0.9790 |
0.0075 | 47.0 | 329 | 0.1144 | 0.9483 | 0.9698 | 0.9590 | 0.9782 |
0.0084 | 48.0 | 336 | 0.1198 | 0.9483 | 0.9698 | 0.9590 | 0.9766 |
0.0103 | 49.0 | 343 | 0.1217 | 0.9519 | 0.9698 | 0.9607 | 0.9766 |
0.0087 | 50.0 | 350 | 0.1230 | 0.9519 | 0.9698 | 0.9607 | 0.9766 |
Framework versions
- Transformers 4.8.2
- Pytorch 1.8.0
- Datasets 1.9.0
- Tokenizers 0.10.3