jialinselenasong's picture
Training complete
398e3e1 verified
metadata
base_model: allenai/biomed_roberta_base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: biomed_roberta_all_deep
    results: []

biomed_roberta_all_deep

This model is a fine-tuned version of allenai/biomed_roberta_base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7519
  • Precision: 0.6732
  • Recall: 0.7142
  • F1: 0.6931
  • Accuracy: 0.8255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 363 0.5600 0.6059 0.6773 0.6396 0.8131
0.7102 2.0 726 0.5290 0.6310 0.7172 0.6713 0.8248
0.4147 3.0 1089 0.5253 0.6620 0.7075 0.6840 0.8289
0.4147 4.0 1452 0.5572 0.6664 0.7062 0.6857 0.8263
0.3081 5.0 1815 0.5942 0.6615 0.7127 0.6862 0.8244
0.231 6.0 2178 0.6393 0.6745 0.7064 0.6901 0.8268
0.1864 7.0 2541 0.6771 0.6769 0.7050 0.6907 0.8250
0.1864 8.0 2904 0.7091 0.6708 0.7120 0.6908 0.8263
0.1523 9.0 3267 0.7463 0.6702 0.7159 0.6923 0.8255
0.1336 10.0 3630 0.7519 0.6732 0.7142 0.6931 0.8255

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1