metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: superb_ks_42
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: superb
type: superb
config: ks
split: validation
args: ks
metrics:
- name: Accuracy
type: accuracy
value: 0.9845542806707855
superb_ks_42
This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set:
- Loss: 0.0853
- Accuracy: 0.9846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.25 | 1.0 | 1597 | 0.1755 | 0.9582 |
0.2502 | 2.0 | 3194 | 0.1402 | 0.9713 |
0.2218 | 3.0 | 4791 | 0.0956 | 0.9803 |
0.1746 | 4.0 | 6388 | 0.0917 | 0.9797 |
0.17 | 5.0 | 7985 | 0.0893 | 0.9807 |
0.1431 | 6.0 | 9582 | 0.0933 | 0.9810 |
0.1238 | 7.0 | 11179 | 0.0958 | 0.9831 |
0.116 | 8.0 | 12776 | 0.0970 | 0.9834 |
0.0995 | 9.0 | 14373 | 0.0853 | 0.9846 |
0.0985 | 10.0 | 15970 | 0.0829 | 0.9838 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1