jhgan commited on
Commit
a4cf37e
·
1 Parent(s): 12d2ffa
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ ---
9
+
10
+ # ko-sroberta-nli
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
29
+
30
+ model = SentenceTransformer('jhgan/ko-sroberta-nli')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Usage (HuggingFace Transformers)
38
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModel
42
+ import torch
43
+
44
+
45
+ #Mean Pooling - Take attention mask into account for correct averaging
46
+ def mean_pooling(model_output, attention_mask):
47
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
+
51
+
52
+ # Sentences we want sentence embeddings for
53
+ sentences = ['This is an example sentence', 'Each sentence is converted']
54
+
55
+ # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('jhgan/ko-sroberta-nli')
57
+ model = AutoModel.from_pretrained('jhgan/ko-sroberta-nli')
58
+
59
+ # Tokenize sentences
60
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
+
62
+ # Compute token embeddings
63
+ with torch.no_grad():
64
+ model_output = model(**encoded_input)
65
+
66
+ # Perform pooling. In this case, mean pooling.
67
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
+
69
+ print("Sentence embeddings:")
70
+ print(sentence_embeddings)
71
+ ```
72
+
73
+
74
+
75
+ ## Evaluation Results
76
+
77
+ <!--- Describe how your model was evaluated -->
78
+
79
+ KorNLI 학습 데이터셋으로 학습한 후 KorSTS 평가 데이터셋으로 평가한 결과입니다.
80
+
81
+ - Cosine Pearson: 82.83
82
+ - Cosine Spearman: 83.85
83
+ - Euclidean Pearson: 82.87
84
+ - Euclidean Spearman: 83.29
85
+ - Manhattan Pearson: 82.88
86
+ - Manhattan Spearman: 83.28
87
+ - Dot Pearson: 80.34
88
+ - Dot Spearman: 79.69
89
+
90
+
91
+ ## Training
92
+ The model was trained with the parameters:
93
+
94
+ **DataLoader**:
95
+
96
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8885 with parameters:
97
+ ```
98
+ {'batch_size': 64}
99
+ ```
100
+
101
+ **Loss**:
102
+
103
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
104
+ ```
105
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
106
+ ```
107
+
108
+ Parameters of the fit()-Method:
109
+ ```
110
+ {
111
+ "epochs": 1,
112
+ "evaluation_steps": 1000,
113
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
114
+ "max_grad_norm": 1,
115
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
116
+ "optimizer_params": {
117
+ "lr": 2e-05
118
+ },
119
+ "scheduler": "WarmupLinear",
120
+ "steps_per_epoch": null,
121
+ "warmup_steps": 889,
122
+ "weight_decay": 0.01
123
+ }
124
+ ```
125
+
126
+
127
+ ## Full Model Architecture
128
+ ```
129
+ SentenceTransformer(
130
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
131
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
132
+ )
133
+ ```
134
+
135
+ ## Citing & Authors
136
+
137
+ <!--- Describe where people can find more information -->
138
+ - Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv preprint arXiv:2004.03289
139
+ - Reimers, Nils and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.” ArXiv abs/1908.10084 (2019)
140
+ - Reimers, Nils and Iryna Gurevych. “Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation.” EMNLP (2020).
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.13.0",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.1.0",
4
+ "transformers": "4.13.0",
5
+ "pytorch": "1.7.0+cu110"
6
+ }
7
+ }
eval/similarity_evaluation_sts-dev_results.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,1000,0.8428703461820426,0.8478481532062864,0.8452687780645933,0.8478791461103199,0.8448548941817824,0.8474506440341039,0.7899008426695505,0.7822952615948647
3
+ 0,2000,0.8429261268198709,0.8467999887790741,0.8488836905867837,0.8508934649245502,0.8479870263113848,0.8499815443639666,0.815656340960773,0.8108470944406697
4
+ 0,3000,0.8459937704287758,0.8488235478749615,0.84636851763169,0.8498971561367171,0.845881163140895,0.8494260813457026,0.807349262888057,0.8001004589199755
5
+ 0,4000,0.8467834304001612,0.8486076633835726,0.8522485419605295,0.8542478409138663,0.8511992056033207,0.8532942512852696,0.812377867419109,0.8054588256024025
6
+ 0,5000,0.8513349017152126,0.8544331275190971,0.8529671233619953,0.8557736764905036,0.8521752546935087,0.8550526617561255,0.8210403992844096,0.8151989853404435
7
+ 0,6000,0.8553801104801592,0.859224783863559,0.855694895825612,0.858654655354708,0.8551552697295045,0.8583522174227659,0.8272240551008639,0.8220159295406095
8
+ 0,7000,0.8477562264731056,0.8522963385401469,0.8485354010649321,0.8519292200904965,0.8476879382200857,0.851052089589602,0.8157058901668391,0.8109219325705416
9
+ 0,8000,0.8516163393634568,0.8546751098931427,0.8512349890116282,0.8546944248531428,0.850268484831101,0.853865381574174,0.8170305751776322,0.811353521835974
10
+ 0,-1,0.8528395190803431,0.855968298382635,0.851634062156249,0.8555263852647068,0.8506384859674028,0.8542714726028356,0.8223759584785482,0.8173713711793362
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e94d99407003d17605524ed42c81d561a2ff83d8a66ec1b965026da4b9a5324
3
+ size 442558967
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.8282797271971932,0.8384568099761461,0.8287017625280234,0.8329041603297936,0.8288056108045755,0.8328168038921644,0.8033719545103778,0.7968690389663012
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "[CLS]", "eos_token": "[SEP]", "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "bos_token": "[CLS]", "eos_token": "[SEP]", "model_max_length": 512, "special_tokens_map_file": "/home/jhgan/.cache/huggingface/transformers/9d0c87e44b00acfbfbae931b2e4068eb6311a0c3e71e23e5400bdf57cab4bfbf.70c17d6e4d492c8f24f5bb97ab56c7f272e947112c6faf9dd846da42ba13eb23", "name_or_path": "klue/roberta-base", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff