updated README.md
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- sentence-similarity
|
7 |
---
|
8 |
|
9 |
-
#
|
10 |
|
11 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
|
@@ -14,19 +14,19 @@ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentence
|
|
14 |
|
15 |
## Usage (Sentence-Transformers)
|
16 |
|
17 |
-
|
18 |
|
19 |
```
|
20 |
-
pip install -U sentence-transformers
|
21 |
```
|
22 |
|
23 |
Then you can use the model like this:
|
24 |
|
25 |
```python
|
26 |
from sentence_transformers import SentenceTransformer
|
27 |
-
sentences = ["
|
28 |
|
29 |
-
model = SentenceTransformer('
|
30 |
embeddings = model.encode(sentences)
|
31 |
print(embeddings)
|
32 |
```
|
@@ -35,10 +35,12 @@ print(embeddings)
|
|
35 |
|
36 |
## Evaluation Results
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## Training
|
44 |
The model was trained with the parameters:
|
@@ -86,4 +88,4 @@ SentenceTransformer(
|
|
86 |
|
87 |
## Citing & Authors
|
88 |
|
89 |
-
<!--- Describe where people can find more information -->
|
|
|
6 |
- sentence-similarity
|
7 |
---
|
8 |
|
9 |
+
# ko-sbert-nli
|
10 |
|
11 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
|
|
|
14 |
|
15 |
## Usage (Sentence-Transformers)
|
16 |
|
17 |
+
λͺ¨λΈμ μ¬μ©νκΈ° μν΄μλ `ko-sentence-transformers` λ₯Ό μ€μΉν΄μΌ ν©λλ€.
|
18 |
|
19 |
```
|
20 |
+
pip install -U ko-sentence-transformers
|
21 |
```
|
22 |
|
23 |
Then you can use the model like this:
|
24 |
|
25 |
```python
|
26 |
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["μλ
νμΈμ?", "νκ΅μ΄ λ¬Έμ₯ μλ² λ©μ μν λ²νΈ λͺ¨λΈμ
λλ€."]
|
28 |
|
29 |
+
model = SentenceTransformer('ko-sbert-nli')
|
30 |
embeddings = model.encode(sentences)
|
31 |
print(embeddings)
|
32 |
```
|
|
|
35 |
|
36 |
## Evaluation Results
|
37 |
|
38 |
+
KorNLI νμ΅ λ°μ΄ν°μ
μΌλ‘ νμ΅ν ν KorSTS νκ° λ°μ΄ν°μ
μΌλ‘ νκ°ν κ²°κ³Όμ
λλ€.
|
|
|
|
|
39 |
|
40 |
+
<!--- Describe how your model was evaluated -->
|
41 |
+
λͺ¨λΈ|νμ΅ λ°μ΄ν°|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhattan Pearson|Manhattan Spearman|Dot Pearson|Dot Spearman|
|
42 |
+
|:----:|:------------------------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
43 |
+
SKT-KoBERT|NLI|82.03|82.36|80.06|79.85|80.08|79.91|75.76|74.72
|
44 |
|
45 |
## Training
|
46 |
The model was trained with the parameters:
|
|
|
88 |
|
89 |
## Citing & Authors
|
90 |
|
91 |
+
<!--- Describe where people can find more information -->
|