ppo-LunarLander-v2 / config.json
jfelgate's picture
Upload PPO LunarLander-v2 trained agent
9d7d1b4
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e30498b9c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e30498b9cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e30498b9d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e30498b9e10>", "_build": "<function ActorCriticPolicy._build at 0x7e30498b9ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7e30498b9f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e30498b9fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e30498ba050>", "_predict": "<function ActorCriticPolicy._predict at 0x7e30498ba0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e30498ba170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e30498ba200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e30498ba290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e30498a5200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693290663103670362, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA28uz3hZKe6X+opNIJrRjCtySs4ZsyiswAAgD8AAIA/AFCjOicctD/1OAE+xG8tvq9avLqtKuq8AAAAAAAAAAAa88Q9ezqNus2N7TqE48I1NIm7OuKrCboAAIA/AAAAALNDlz09dwq7UGrmu5QusjxX8/M7066YvQAAgD8AAIA/5V2MvrzLdT8dWIu6laKqvkS/BL7eVLo8AAAAAAAAAAD6VVw+bAWEP0ljpT2KFlO+bbsUPmL1Q7wAAAAAAAAAAIYgSj7S7hs/AKzjvZMoQ77SGto8a5YKvAAAAAAAAAAArXVOPi4b2bwD5N47N21+urNrQb7kqTu7AACAPwAAgD8z/ZC8SMuguv1+LTmJMCM00RoQOawlR7gAAIA/AACAP51iXr6CKxs+kPhUPuWZUr6Qw9i8rRY3PQAAAAAAAAAANpNyvgduHz5KJiQ+d0aPvhPMlLmHwbU9AAAAAAAAAACITra+Cw1MP1sa3j0Dx32+9xHfvfvQmj0AAAAAAAAAAM05Ab1Dwqo/HXbavh3t/b6o0wA9bp1QPQAAAAAAAAAAzXPsPT3HPruiwCG+FcYWPKp9Pz3w4E++AACAPwAAgD96OKC+FStfP/LLo71nZH++Q75Rvg65yj0AAAAAAAAAAKaMrz2Ptju6RWR+O1VkwTi/r0U74hcTugAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWgmxD9fkaMAWyUTegDjAF0lEdAl5NbowEhaHV9lChoBkdAYyjZSNwR5GgHTegDaAhHQJeT5NWU8mt1fZQoaAZHQGFTbmuDBdloB03oA2gIR0CXmDV7x/d7dX2UKGgGR0BsdR8pkPMCaAdNgQFoCEdAl5nvx2B8QnV9lChoBkdAb9vyXlbNbGgHTb8DaAhHQJeaNIGyHEd1fZQoaAZHQGEwG8Empl1oB03oA2gIR0CXqGVoYekpdX2UKGgGR0BivBk/bCaaaAdN6ANoCEdAl6m3UYsND3V9lChoBkdAcUZRJmNBGGgHTVUBaAhHQJeqISteUpx1fZQoaAZHQGUVCOWBz3hoB03oA2gIR0CXrGRWcSXddX2UKGgGR0Bfd2XkYGdJaAdN6ANoCEdAl6zZBgNPQHV9lChoBkdAbNM9U0elsWgHTUMDaAhHQJetbNyHVPN1fZQoaAZHQG29dfsu3+doB03sAmgIR0CXsY2gWac7dX2UKGgGR0BjSIfU4JeFaAdN6ANoCEdAl7MHcDbJwXV9lChoBkdAYv41gpjMFGgHTegDaAhHQJfNpRceKbd1fZQoaAZHQGBsJCKJl8RoB03oA2gIR0CXzu6pHZsbdX2UKGgGR0BGaYHPeHi4aAdL72gIR0CX0HbuMMqjdX2UKGgGR0Blkm4gA6uGaAdN6ANoCEdAl9O5gG8mKXV9lChoBkdAbsE10DEFXGgHTUkBaAhHQJfUhSzgMtt1fZQoaAZHQGDV/8/D+BJoB03oA2gIR0CX1Vakyk9EdX2UKGgGR0BtgjsWweNlaAdNowJoCEdAl9e6nm7rcHV9lChoBkdAceZl/pdKNGgHTXoBaAhHQJfcwgaFVT91fZQoaAZHQGIA0s4DLbJoB03oA2gIR0CX5wcJ+lTFdX2UKGgGR0BvV59NN8E3aAdNxgJoCEdAl+gaYmb9ZXV9lChoBkdAcAFbdadMCmgHTVoBaAhHQJfqR+PRzBB1fZQoaAZHQFnhT4+KTB9oB03oA2gIR0CX6y5avA45dX2UKGgGR0BmnuYOUdJbaAdN6ANoCEdAl+z+bZvkzXV9lChoBkdAbI77v5P/JmgHTdcCaAhHQJfuIL2HtWx1fZQoaAZHQG8dfdIoVmBoB02BAmgIR0CX8DjynUDudX2UKGgGR0BrYa/O+qR2aAdNMgNoCEdAl/CYRVZLZnV9lChoBkdAcFZiz9jwx2gHTd4BaAhHQJf3dBSk0rN1fZQoaAZHQHCMM+7lJYloB02QAWgIR0CX+Ap6hQFcdX2UKGgGR0BNYe1Bt1p1aAdNJQFoCEdAl/y+6d1+zHV9lChoBkdAZCyD5CWu5mgHTegDaAhHQJf++aMJhOR1fZQoaAZHQG9SRcu8K5VoB00FA2gIR0CYBM8YyfthdX2UKGgGR0Bte737DVH4aAdNRwFoCEdAmAd/x2B8QnV9lChoBkdAb6hlV94NZ2gHTfEBaAhHQJgLs7+1jRV1fZQoaAZHQGrN2sq8UVVoB03JA2gIR0CYED7MgU1ydX2UKGgGR0Bji/EwWWQfaAdN6ANoCEdAmCFUGqxTsXV9lChoBkdAI4KAJ9iMHmgHTRsBaAhHQJgjyVyFPBV1fZQoaAZHQGLF8i4axX5oB03oA2gIR0CYKFIJ7b+MdX2UKGgGR0BntyRnvlU7aAdN6ANoCEdAmCoTz7MxGnV9lChoBkdAcCUUCaJAMWgHTbICaAhHQJgsJC6Ymb91fZQoaAZHQHI3am0mdAhoB039AWgIR0CYLHC/oJRgdX2UKGgGR0Bs3q8J2MbWaAdN7QJoCEdAmC65NbkfcXV9lChoBkdAcCxPlMh5gWgHTUgCaAhHQJgwJPpIMBp1fZQoaAZHQG5lSHdoFmpoB03dAmgIR0CYNEY/mknDdX2UKGgGR0BwXp5iVjZtaAdNGAFoCEdAmDWp7LMcInV9lChoBkdAcLzo4dZJTWgHTZ4BaAhHQJg2pcSoOx11fZQoaAZHQHEWbIgeRxNoB01MA2gIR0CYOClGgBcSdX2UKGgGR0BtBWecx0uEaAdNFwJoCEdAmDh1rM1TBXV9lChoBkdAcLSDneSB9WgHTXcBaAhHQJg5biT+vQp1fZQoaAZHQHFT5zo2XLNoB02FAmgIR0CYOX87p3X7dX2UKGgGR0BuMrMcIZ62aAdNXwJoCEdAmD7j90ihWnV9lChoBkdAcOeEmplz2mgHTb4DaAhHQJhCsM+eOGV1fZQoaAZHQHHjx51Ng0FoB01zAWgIR0CYR6YZEUj+dX2UKGgGR0BtnHLs8gZCaAdNXgFoCEdAmEwcMNMGo3V9lChoBkdAbSg1ivxH5WgHTUEBaAhHQJhTPL6k6911fZQoaAZHQG/bX18LKFJoB03gAWgIR0CYV4HJ9y93dX2UKGgGR0Bxh6cEvCdjaAdNUAFoCEdAmFeQQUYbbXV9lChoBkdAbH/GlyimEWgHTTcCaAhHQJhYN/BnBcl1fZQoaAZHQHGHob4rSVpoB038AmgIR0CYWfaLGaQWdX2UKGgGR0BwlEhnrY5DaAdNqANoCEdAmFs3EZR8+nV9lChoBkdAcBMETQE6k2gHTZoCaAhHQJhw223KB/Z1fZQoaAZHQGsF4vN/vv1oB02TAmgIR0CYcXunMt9QdX2UKGgGR0BxhQEW69TQaAdNHQNoCEdAmHHpHNHH3nV9lChoBkdAbFFP/JeVs2gHTXoBaAhHQJhyQV2zOX51fZQoaAZHQHCA8ynDR+loB02vA2gIR0CYcomfoRqXdX2UKGgGR0BwxtAY51eTaAdNkANoCEdAmHSi5VfeDXV9lChoBkdATEkXBP9DQmgHS/RoCEdAmHXgJC0F83V9lChoBkdAcI8eNDMNdGgHTQwDaAhHQJh1+ojv/ip1fZQoaAZHQGX4TSkTHsFoB03oA2gIR0CYeR5GSZBtdX2UKGgGR0BueSkKu0TlaAdNMAFoCEdAmHsulKsdUHV9lChoBkdAcPXqN6w+uGgHTWYDaAhHQJh8Q+nqFAV1fZQoaAZHQHCeRllK9PFoB010AWgIR0CYfFXGff4zdX2UKGgGR0BwYaTY/Vy4aAdN9QFoCEdAmH/KrR0EHXV9lChoBkdAFJ7OE/Spi2gHS/FoCEdAmIP/grH2iHV9lChoBkdAcd/jdYW+G2gHTWYBaAhHQJiHPpr1uix1fZQoaAZHQG/C+eFtbcJoB01aAWgIR0CYiLcUdq+KdX2UKGgGR0BwrfENvwVkaAdNvwFoCEdAmIqR9G7SRnV9lChoBkdAcXR2LYPGyWgHTUMCaAhHQJiMJK9PDYR1fZQoaAZHQHJ6cTN+so5oB03dAWgIR0CYjFWqLjxTdX2UKGgGR0Bw3567dznzaAdNTgFoCEdAmI2ZOvdM03V9lChoBkdAbTS3UhFEzGgHTdgBaAhHQJiPqkGiYb91fZQoaAZHQGY7F1jiGWVoB03oA2gIR0CYj9K28Zk1dX2UKGgGR0ByNKQr+YMOaAdNhwFoCEdAmJEG9Htnf3V9lChoBkdAcRuzXz19OWgHTVsBaAhHQJiRozWPLgZ1fZQoaAZHQG6qUNrj5sVoB010AmgIR0CYkymG/N7jdX2UKGgGR0BJulSsKb8WaAdL+WgIR0CYk8WPLgXNdX2UKGgGR0BEwQb+98JEaAdL4mgIR0CYlFFId2gWdX2UKGgGR0BwqLvttyggaAdNUwJoCEdAmJc5xWDHwXV9lChoBkdARdhxgiNbT2gHS+toCEdAmJnSM1jy4HV9lChoBkdAZPbzo2XLNmgHTegDaAhHQJibV6hQFcJ1fZQoaAZHQHDXlbqyGBZoB01lAWgIR0CYm8XCj1wpdX2UKGgGR0BObKZtvXK9aAdNEgFoCEdAmJ0Ml9jPOnV9lChoBkdAcGW9IPK+z2gHTWgBaAhHQJift/z8P4F1fZQoaAZHQG1e+Haews5oB02WAWgIR0CYn8Up/gBLdX2UKGgGR0BDMJ6Y3Ns4aAdNFQFoCEdAmJ/C/O+qR3V9lChoBkdAcQXqASWZ7WgHTeoCaAhHQJig1vitJWh1fZQoaAZHQHIoNrGipNtoB013AmgIR0CYo8yHEdeZdX2UKGgGR0BtJdUZNwiraAdNZgFoCEdAmKQWHLzPKXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}