Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +1 -1
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 241.91 +/- 20.30
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b603df7eb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b603df7eb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b603df7ec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b603df7ecb0>", "_build": "<function ActorCriticPolicy._build at 0x7b603df7ed40>", "forward": "<function ActorCriticPolicy.forward at 0x7b603df7edd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b603df7ee60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b603df7eef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b603df7ef80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b603df7f010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b603df7f0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b603df7f130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b603e11ba80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693287356980502771, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpP2z0k+Z4/JqRKPs+wpL4LwhM+Fo4MPAAAAAAAAAAA2iSVPa5/grqmXte6scW9tS7EKLtlN/s5AACAPwAAgD+NNMI9e1KNuu2ex7vGhCg4h2RauWbMCjUAAAAAAACAPzMVfD2FA9u5tejSOj7VvjV+Cdi6/hz+uQAAgD8AAIA/83ufPVynHLqe//e1hpQhsVQPEDtbQCI1AACAPwAAgD+mhtU+CzNUPxB+eT4BmZS+uly8PtPDYL0AAAAAAAAAAGBye76MyY0/hjG9vWymk77ZHBq+KRy3PQAAAAAAAAAATbAlPZR4iz0yRI49Zzdevs3kH7zz2vq6AAAAAAAAAACAoyI+nzv/uyIgZzptriy4VAOLvTTWlrkAAIA/AACAP2YBFz4DnDu8zf56O1u9Ero8vaa9WvrpugAAAAAAAIA/jVPOPeHUl7qI8YC7b0FIteBslLr865Q6AACAPwAAgD/N7hY+wzEQupm7qbsiqrS3/lYtOkaanrgAAIA/AACAPzPzVjqPdj+6DX9sOoldpbM+dYW6wI6JuQAAgD8AAIA/ACcrPRTAg7pCjtG1UfOpsNlCx7oN0vo0AACAPwAAgD/AAq49bN2MuzueBbxMEmQ8QtrdvIZRRT0AAIA/AACAP5qIsz1S4Nu5MT+kOlINLzZkOSo62JDBuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTIJ+c6Nl2MAWyUTegDjAF0lEdAkw65iAlOXXV9lChoBkdAZf+hK15SnGgHTegDaAhHQJMTQ/1QIld1fZQoaAZHQGErCPZIxxloB03oA2gIR0CTINO3DvVmdX2UKGgGR0Bn9GQhfShKaAdN6ANoCEdAkysbGJemenV9lChoBkdAYdFub7TDwmgHTegDaAhHQJMslSjxkNF1fZQoaAZHQF8h5WzWwvBoB03oA2gIR0CTLNB/7SApdX2UKGgGR0BlmGVopQUIaAdN6ANoCEdAky/ZwXIlt3V9lChoBkdAYTacbR4QjGgHTegDaAhHQJM44wGnn+11fZQoaAZHQGY7GPYFqztoB03oA2gIR0CTV/oXKr7wdX2UKGgGR0Bcbth/iHZcaAdN6ANoCEdAk1g2sijcmHV9lChoBkdAZegTCcf/3mgHTegDaAhHQJNajLX+VC51fZQoaAZHQEcbOgQHzH1oB00OAWgIR0CTYqetSydGdX2UKGgGR0BlBjCiyprDaAdN6ANoCEdAk2SIoE0SAnV9lChoBkdAZdUSpR4yGmgHTegDaAhHQJNkzJDE3sJ1fZQoaAZHQGGFAXl8w6BoB03oA2gIR0CTZxk2P1cudX2UKGgGR0BkiQ/X5FgEaAdN6ANoCEdAk2mQuEmICXV9lChoBkdAYXuYoAn2I2gHTegDaAhHQJNqHmRvFWJ1fZQoaAZHP/gLJjlPrOZoB0v6aAhHQJNrHe7+T/11fZQoaAZHQEvQrMkhRqJoB00fAWgIR0CTa2a9K28adX2UKGgGR0BlUe49X9zfaAdN6ANoCEdAk2t9VrAP/nV9lChoBkdAY1fHUc4o7WgHTegDaAhHQJNu6LtNSIh1fZQoaAZHQFGfwZOzpotoB00XAWgIR0CTctIDHOrydX2UKGgGR0BnE9jd56dEaAdN6ANoCEdAk3s3AZbY9XV9lChoBkdAZQnOvdM0xmgHTegDaAhHQJOHe6lLvkR1fZQoaAZHQGQIn7HhjvxoB03oA2gIR0CTiSVPva11dX2UKGgGR0Bjl/p2U0N0aAdN6ANoCEdAk4lnY150KnV9lChoBkdAZcyzsyBTXWgHTegDaAhHQJOMB3+uNgl1fZQoaAZHQGYTaews5GVoB03oA2gIR0CTq9Roh6jWdX2UKGgGR0BBvBO58Sf2aAdL9GgIR0CTq9VBD5TIdX2UKGgGR0BhBZpSJj2BaAdN6ANoCEdAk7dTOkcjq3V9lChoBkdAX8d3FDOTq2gHTegDaAhHQJO51f2K2rp1fZQoaAZHQGQPanR9gF5oB03oA2gIR0CTvY/oq0+ldX2UKGgGR0BavFXq7iAEaAdN6ANoCEdAk8GRcE/0NHV9lChoBkdAaJN114gRsmgHTegDaAhHQJPCdnpSrHV1fZQoaAZHQGYDthmXgLtoB03oA2gIR0CTxC8xKxs3dX2UKGgGR0Bm5ybx3FDOaAdN6ANoCEdAk8Sx+az/qHV9lChoBkdAYX+q+ajN6mgHTegDaAhHQJPE3wmVqvh1fZQoaAZHQGaij3M6ikBoB03oA2gIR0CTyioTfzjFdX2UKGgGR0BhTftnf2saaAdN6ANoCEdAk87uxOclPnV9lChoBkdATlgIKMNtqGgHTTEBaAhHQJPSeMuOCGx1fZQoaAZHQGDH6RyOrABoB03oA2gIR0CT1XzguRLcdX2UKGgGR0Bg6BBw++ueaAdN6ANoCEdAk95tOh0yQHV9lChoBkdAXScmCyyD7WgHTegDaAhHQJPftGvwEyN1fZQoaAZHQGHuLsa86FNoB03oA2gIR0CT3+o24uscdX2UKGgGR0Bc4RYNiH6/aAdN6ANoCEdAlAm0I9kjHHV9lChoBkdAZXqi8nNPg2gHTegDaAhHQJQJtVaOgg51fZQoaAZHQGWJnfMwDeVoB03oA2gIR0CUFHHLidaudX2UKGgGR0BgV9FtsN2DaAdN6ANoCEdAlBZRrSE123V9lChoBkdAYCbYwIt16mgHTegDaAhHQJQcFQ3xWkt1fZQoaAZHQGDfNVJcxCZoB03oA2gIR0CUHMFUyYXwdX2UKGgGR0BkxNipeeFtaAdN6ANoCEdAlB4HBciW3XV9lChoBkdAZIsNjslb/2gHTegDaAhHQJQeZMTN+sp1fZQoaAZHQGOm6m4y44JoB03oA2gIR0CUHoHC4z7/dX2UKGgGR0BhvjRtxdY5aAdN6ANoCEdAlCKocvM8o3V9lChoBkdAZvi9Net0WGgHTegDaAhHQJQngT37DVJ1fZQoaAZHQGWLTvZyuIRoB03oA2gIR0CUKz9Ba9sadX2UKGgGR0BiEejASFoMaAdN6ANoCEdAlC5i1y/9HnV9lChoBkdAYTAPbO/tY2gHTegDaAhHQJQ54PbwjMV1fZQoaAZHQGRxGLk0aZRoB03oA2gIR0CUO41zhgmadX2UKGgGR0BkMC3AmAskaAdN6ANoCEdAlDvS4rjHXHV9lChoBkdAYOVjFyaNM2gHTegDaAhHQJRicpPRArx1fZQoaAZHQGJ/lMRHww1oB03oA2gIR0CUYnPqs2ehdX2UKGgGR0Bh6Zoh6jWTaAdN6ANoCEdAlGyErK/203V9lChoBkdAZFcDJ2dNFmgHTegDaAhHQJRu0D3dsSF1fZQoaAZHQGdUme18b71oB03oA2gIR0CUdhNh3JPqdX2UKGgGR0BhVCV6eGwiaAdN6ANoCEdAlHb2mce8w3V9lChoBkdAZsfgqmTC+GgHTegDaAhHQJR4jQfIS151fZQoaAZHQGU2c01qFh5oB03oA2gIR0CUeQel9BrvdX2UKGgGR0BjzQlY2bXpaAdN6ANoCEdAlHkuumrKeXV9lChoBkdAZUqbT+ee4GgHTegDaAhHQJR+6waBI4F1fZQoaAZHQGVbWnbZezFoB03oA2gIR0CUhNkCFK02dX2UKGgGR0Bn1GMbWEsbaAdN6ANoCEdAlIgtwaR6nnV9lChoBkdAZBQEHt4RmWgHTegDaAhHQJSK0vsZ5zJ1fZQoaAZHQGd8ldLQHA1oB03oA2gIR0CUkvYr8R+SdX2UKGgGR0BhM5ZwGW2PaAdN6ANoCEdAlJQloDgZTHV9lChoBkdAYFsWcBltj2gHTegDaAhHQJSUVd3Sro51fZQoaAZHQDwYysS00FdoB00YAWgIR0CUlW1WbPQfdX2UKGgGR0Awf3pOerdWaAdL/2gIR0CUpBBp5/smdX2UKGgGR0BlS+MIeHSGaAdN6ANoCEdAlKZGdZq20HV9lChoBkdAYbaCQLeANGgHTegDaAhHQJSmSCmMwUR1fZQoaAZHQGO9JzDGcWloB03oA2gIR0CUxZMLF4s3dX2UKGgGR0BbIDHn2ZiNaAdN6ANoCEdAlMccoYvWYnV9lChoBkdAXfcurZJ04mgHTegDaAhHQJTMAFUyYXx1fZQoaAZHQGPbv0AcT8JoB03oA2gIR0CUzJ20AtFsdX2UKGgGR8AtDDF6zE75aAdNCQFoCEdAlMyv2TPjXHV9lChoBkdAZYZq0tyxRmgHTegDaAhHQJTNoKZ2IO91fZQoaAZHQFXx6wt8NQVoB03oA2gIR0CUzfWsA/9pdX2UKGgGR0BkysTi83+/aAdN6ANoCEdAlM4OYx+KCXV9lChoBkdAZusDkELYw2gHTegDaAhHQJTRinQ6ZIB1fZQoaAZHQCmNE5QxesxoB0vdaAhHQJTXZr30wrV1fZQoaAZHQF+VmtyPuG9oB03oA2gIR0CU2Q45tFa0dX2UKGgGR0BkXTjWCmMwaAdN6ANoCEdAlNuP1Hvtt3V9lChoBkdAZRTkBjnV5WgHTegDaAhHQJTjBt52Qnx1fZQoaAZHQGUZ9tVJcxFoB03oA2gIR0CU5EAmzBykdX2UKGgGR0BcPQCr92ovaAdN6ANoCEdAlOV0DU3GXHV9lChoBkdAOeKsQumJnGgHS+NoCEdAlOX06o2n9HV9lChoBkc/7uXE61b7j2gHTQMBaAhHQJTq3f642CN1fZQoaAZHQGBAn4fwI+poB03oA2gIR0CU9SowVTJhdX2UKGgGR0A4BI42jwhGaAdNFAFoCEdAlPVljVhCt3V9lChoBkdAZPZeTFERa2gHTegDaAhHQJT3k2FWXC11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e30498b9c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e30498b9cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e30498b9d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e30498b9e10>", "_build": "<function ActorCriticPolicy._build at 0x7e30498b9ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7e30498b9f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e30498b9fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e30498ba050>", "_predict": "<function ActorCriticPolicy._predict at 0x7e30498ba0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e30498ba170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e30498ba200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e30498ba290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e30498a5200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693290663103670362, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA28uz3hZKe6X+opNIJrRjCtySs4ZsyiswAAgD8AAIA/AFCjOicctD/1OAE+xG8tvq9avLqtKuq8AAAAAAAAAAAa88Q9ezqNus2N7TqE48I1NIm7OuKrCboAAIA/AAAAALNDlz09dwq7UGrmu5QusjxX8/M7066YvQAAgD8AAIA/5V2MvrzLdT8dWIu6laKqvkS/BL7eVLo8AAAAAAAAAAD6VVw+bAWEP0ljpT2KFlO+bbsUPmL1Q7wAAAAAAAAAAIYgSj7S7hs/AKzjvZMoQ77SGto8a5YKvAAAAAAAAAAArXVOPi4b2bwD5N47N21+urNrQb7kqTu7AACAPwAAgD8z/ZC8SMuguv1+LTmJMCM00RoQOawlR7gAAIA/AACAP51iXr6CKxs+kPhUPuWZUr6Qw9i8rRY3PQAAAAAAAAAANpNyvgduHz5KJiQ+d0aPvhPMlLmHwbU9AAAAAAAAAACITra+Cw1MP1sa3j0Dx32+9xHfvfvQmj0AAAAAAAAAAM05Ab1Dwqo/HXbavh3t/b6o0wA9bp1QPQAAAAAAAAAAzXPsPT3HPruiwCG+FcYWPKp9Pz3w4E++AACAPwAAgD96OKC+FStfP/LLo71nZH++Q75Rvg65yj0AAAAAAAAAAKaMrz2Ptju6RWR+O1VkwTi/r0U74hcTugAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWgmxD9fkaMAWyUTegDjAF0lEdAl5NbowEhaHV9lChoBkdAYyjZSNwR5GgHTegDaAhHQJeT5NWU8mt1fZQoaAZHQGFTbmuDBdloB03oA2gIR0CXmDV7x/d7dX2UKGgGR0BsdR8pkPMCaAdNgQFoCEdAl5nvx2B8QnV9lChoBkdAb9vyXlbNbGgHTb8DaAhHQJeaNIGyHEd1fZQoaAZHQGEwG8Empl1oB03oA2gIR0CXqGVoYekpdX2UKGgGR0BivBk/bCaaaAdN6ANoCEdAl6m3UYsND3V9lChoBkdAcUZRJmNBGGgHTVUBaAhHQJeqISteUpx1fZQoaAZHQGUVCOWBz3hoB03oA2gIR0CXrGRWcSXddX2UKGgGR0Bfd2XkYGdJaAdN6ANoCEdAl6zZBgNPQHV9lChoBkdAbNM9U0elsWgHTUMDaAhHQJetbNyHVPN1fZQoaAZHQG29dfsu3+doB03sAmgIR0CXsY2gWac7dX2UKGgGR0BjSIfU4JeFaAdN6ANoCEdAl7MHcDbJwXV9lChoBkdAYv41gpjMFGgHTegDaAhHQJfNpRceKbd1fZQoaAZHQGBsJCKJl8RoB03oA2gIR0CXzu6pHZsbdX2UKGgGR0BGaYHPeHi4aAdL72gIR0CX0HbuMMqjdX2UKGgGR0Blkm4gA6uGaAdN6ANoCEdAl9O5gG8mKXV9lChoBkdAbsE10DEFXGgHTUkBaAhHQJfUhSzgMtt1fZQoaAZHQGDV/8/D+BJoB03oA2gIR0CX1Vakyk9EdX2UKGgGR0BtgjsWweNlaAdNowJoCEdAl9e6nm7rcHV9lChoBkdAceZl/pdKNGgHTXoBaAhHQJfcwgaFVT91fZQoaAZHQGIA0s4DLbJoB03oA2gIR0CX5wcJ+lTFdX2UKGgGR0BvV59NN8E3aAdNxgJoCEdAl+gaYmb9ZXV9lChoBkdAcAFbdadMCmgHTVoBaAhHQJfqR+PRzBB1fZQoaAZHQFnhT4+KTB9oB03oA2gIR0CX6y5avA45dX2UKGgGR0BmnuYOUdJbaAdN6ANoCEdAl+z+bZvkzXV9lChoBkdAbI77v5P/JmgHTdcCaAhHQJfuIL2HtWx1fZQoaAZHQG8dfdIoVmBoB02BAmgIR0CX8DjynUDudX2UKGgGR0BrYa/O+qR2aAdNMgNoCEdAl/CYRVZLZnV9lChoBkdAcFZiz9jwx2gHTd4BaAhHQJf3dBSk0rN1fZQoaAZHQHCMM+7lJYloB02QAWgIR0CX+Ap6hQFcdX2UKGgGR0BNYe1Bt1p1aAdNJQFoCEdAl/y+6d1+zHV9lChoBkdAZCyD5CWu5mgHTegDaAhHQJf++aMJhOR1fZQoaAZHQG9SRcu8K5VoB00FA2gIR0CYBM8YyfthdX2UKGgGR0Bte737DVH4aAdNRwFoCEdAmAd/x2B8QnV9lChoBkdAb6hlV94NZ2gHTfEBaAhHQJgLs7+1jRV1fZQoaAZHQGrN2sq8UVVoB03JA2gIR0CYED7MgU1ydX2UKGgGR0Bji/EwWWQfaAdN6ANoCEdAmCFUGqxTsXV9lChoBkdAI4KAJ9iMHmgHTRsBaAhHQJgjyVyFPBV1fZQoaAZHQGLF8i4axX5oB03oA2gIR0CYKFIJ7b+MdX2UKGgGR0BntyRnvlU7aAdN6ANoCEdAmCoTz7MxGnV9lChoBkdAcCUUCaJAMWgHTbICaAhHQJgsJC6Ymb91fZQoaAZHQHI3am0mdAhoB039AWgIR0CYLHC/oJRgdX2UKGgGR0Bs3q8J2MbWaAdN7QJoCEdAmC65NbkfcXV9lChoBkdAcCxPlMh5gWgHTUgCaAhHQJgwJPpIMBp1fZQoaAZHQG5lSHdoFmpoB03dAmgIR0CYNEY/mknDdX2UKGgGR0BwXp5iVjZtaAdNGAFoCEdAmDWp7LMcInV9lChoBkdAcLzo4dZJTWgHTZ4BaAhHQJg2pcSoOx11fZQoaAZHQHEWbIgeRxNoB01MA2gIR0CYOClGgBcSdX2UKGgGR0BtBWecx0uEaAdNFwJoCEdAmDh1rM1TBXV9lChoBkdAcLSDneSB9WgHTXcBaAhHQJg5biT+vQp1fZQoaAZHQHFT5zo2XLNoB02FAmgIR0CYOX87p3X7dX2UKGgGR0BuMrMcIZ62aAdNXwJoCEdAmD7j90ihWnV9lChoBkdAcOeEmplz2mgHTb4DaAhHQJhCsM+eOGV1fZQoaAZHQHHjx51Ng0FoB01zAWgIR0CYR6YZEUj+dX2UKGgGR0BtnHLs8gZCaAdNXgFoCEdAmEwcMNMGo3V9lChoBkdAbSg1ivxH5WgHTUEBaAhHQJhTPL6k6911fZQoaAZHQG/bX18LKFJoB03gAWgIR0CYV4HJ9y93dX2UKGgGR0Bxh6cEvCdjaAdNUAFoCEdAmFeQQUYbbXV9lChoBkdAbH/GlyimEWgHTTcCaAhHQJhYN/BnBcl1fZQoaAZHQHGHob4rSVpoB038AmgIR0CYWfaLGaQWdX2UKGgGR0BwlEhnrY5DaAdNqANoCEdAmFs3EZR8+nV9lChoBkdAcBMETQE6k2gHTZoCaAhHQJhw223KB/Z1fZQoaAZHQGsF4vN/vv1oB02TAmgIR0CYcXunMt9QdX2UKGgGR0BxhQEW69TQaAdNHQNoCEdAmHHpHNHH3nV9lChoBkdAbFFP/JeVs2gHTXoBaAhHQJhyQV2zOX51fZQoaAZHQHCA8ynDR+loB02vA2gIR0CYcomfoRqXdX2UKGgGR0BwxtAY51eTaAdNkANoCEdAmHSi5VfeDXV9lChoBkdATEkXBP9DQmgHS/RoCEdAmHXgJC0F83V9lChoBkdAcI8eNDMNdGgHTQwDaAhHQJh1+ojv/ip1fZQoaAZHQGX4TSkTHsFoB03oA2gIR0CYeR5GSZBtdX2UKGgGR0BueSkKu0TlaAdNMAFoCEdAmHsulKsdUHV9lChoBkdAcPXqN6w+uGgHTWYDaAhHQJh8Q+nqFAV1fZQoaAZHQHCeRllK9PFoB010AWgIR0CYfFXGff4zdX2UKGgGR0BwYaTY/Vy4aAdN9QFoCEdAmH/KrR0EHXV9lChoBkdAFJ7OE/Spi2gHS/FoCEdAmIP/grH2iHV9lChoBkdAcd/jdYW+G2gHTWYBaAhHQJiHPpr1uix1fZQoaAZHQG/C+eFtbcJoB01aAWgIR0CYiLcUdq+KdX2UKGgGR0BwrfENvwVkaAdNvwFoCEdAmIqR9G7SRnV9lChoBkdAcXR2LYPGyWgHTUMCaAhHQJiMJK9PDYR1fZQoaAZHQHJ6cTN+so5oB03dAWgIR0CYjFWqLjxTdX2UKGgGR0Bw3567dznzaAdNTgFoCEdAmI2ZOvdM03V9lChoBkdAbTS3UhFEzGgHTdgBaAhHQJiPqkGiYb91fZQoaAZHQGY7F1jiGWVoB03oA2gIR0CYj9K28Zk1dX2UKGgGR0ByNKQr+YMOaAdNhwFoCEdAmJEG9Htnf3V9lChoBkdAcRuzXz19OWgHTVsBaAhHQJiRozWPLgZ1fZQoaAZHQG6qUNrj5sVoB010AmgIR0CYkymG/N7jdX2UKGgGR0BJulSsKb8WaAdL+WgIR0CYk8WPLgXNdX2UKGgGR0BEwQb+98JEaAdL4mgIR0CYlFFId2gWdX2UKGgGR0BwqLvttyggaAdNUwJoCEdAmJc5xWDHwXV9lChoBkdARdhxgiNbT2gHS+toCEdAmJnSM1jy4HV9lChoBkdAZPbzo2XLNmgHTegDaAhHQJibV6hQFcJ1fZQoaAZHQHDXlbqyGBZoB01lAWgIR0CYm8XCj1wpdX2UKGgGR0BObKZtvXK9aAdNEgFoCEdAmJ0Ml9jPOnV9lChoBkdAcGW9IPK+z2gHTWgBaAhHQJift/z8P4F1fZQoaAZHQG1e+Haews5oB02WAWgIR0CYn8Up/gBLdX2UKGgGR0BDMJ6Y3Ns4aAdNFQFoCEdAmJ/C/O+qR3V9lChoBkdAcQXqASWZ7WgHTeoCaAhHQJig1vitJWh1fZQoaAZHQHIoNrGipNtoB013AmgIR0CYo8yHEdeZdX2UKGgGR0BtJdUZNwiraAdNZgFoCEdAmKQWHLzPKXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 146750
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92576716f46b76f22a511db598c42e08d31fff61379193f2597afeac1d37023e
|
3 |
size 146750
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,16 +26,16 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e30498b9c60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e30498b9cf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e30498b9d80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e30498b9e10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e30498b9ea0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e30498b9f30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e30498b9fc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e30498ba050>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e30498ba0e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e30498ba170>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e30498ba200>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e30498ba290>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e30498a5200>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1693290663103670362,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA28uz3hZKe6X+opNIJrRjCtySs4ZsyiswAAgD8AAIA/AFCjOicctD/1OAE+xG8tvq9avLqtKuq8AAAAAAAAAAAa88Q9ezqNus2N7TqE48I1NIm7OuKrCboAAIA/AAAAALNDlz09dwq7UGrmu5QusjxX8/M7066YvQAAgD8AAIA/5V2MvrzLdT8dWIu6laKqvkS/BL7eVLo8AAAAAAAAAAD6VVw+bAWEP0ljpT2KFlO+bbsUPmL1Q7wAAAAAAAAAAIYgSj7S7hs/AKzjvZMoQ77SGto8a5YKvAAAAAAAAAAArXVOPi4b2bwD5N47N21+urNrQb7kqTu7AACAPwAAgD8z/ZC8SMuguv1+LTmJMCM00RoQOawlR7gAAIA/AACAP51iXr6CKxs+kPhUPuWZUr6Qw9i8rRY3PQAAAAAAAAAANpNyvgduHz5KJiQ+d0aPvhPMlLmHwbU9AAAAAAAAAACITra+Cw1MP1sa3j0Dx32+9xHfvfvQmj0AAAAAAAAAAM05Ab1Dwqo/HXbavh3t/b6o0wA9bp1QPQAAAAAAAAAAzXPsPT3HPruiwCG+FcYWPKp9Pz3w4E++AACAPwAAgD96OKC+FStfP/LLo71nZH++Q75Rvg65yj0AAAAAAAAAAKaMrz2Ptju6RWR+O1VkwTi/r0U74hcTugAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWgmxD9fkaMAWyUTegDjAF0lEdAl5NbowEhaHV9lChoBkdAYyjZSNwR5GgHTegDaAhHQJeT5NWU8mt1fZQoaAZHQGFTbmuDBdloB03oA2gIR0CXmDV7x/d7dX2UKGgGR0BsdR8pkPMCaAdNgQFoCEdAl5nvx2B8QnV9lChoBkdAb9vyXlbNbGgHTb8DaAhHQJeaNIGyHEd1fZQoaAZHQGEwG8Empl1oB03oA2gIR0CXqGVoYekpdX2UKGgGR0BivBk/bCaaaAdN6ANoCEdAl6m3UYsND3V9lChoBkdAcUZRJmNBGGgHTVUBaAhHQJeqISteUpx1fZQoaAZHQGUVCOWBz3hoB03oA2gIR0CXrGRWcSXddX2UKGgGR0Bfd2XkYGdJaAdN6ANoCEdAl6zZBgNPQHV9lChoBkdAbNM9U0elsWgHTUMDaAhHQJetbNyHVPN1fZQoaAZHQG29dfsu3+doB03sAmgIR0CXsY2gWac7dX2UKGgGR0BjSIfU4JeFaAdN6ANoCEdAl7MHcDbJwXV9lChoBkdAYv41gpjMFGgHTegDaAhHQJfNpRceKbd1fZQoaAZHQGBsJCKJl8RoB03oA2gIR0CXzu6pHZsbdX2UKGgGR0BGaYHPeHi4aAdL72gIR0CX0HbuMMqjdX2UKGgGR0Blkm4gA6uGaAdN6ANoCEdAl9O5gG8mKXV9lChoBkdAbsE10DEFXGgHTUkBaAhHQJfUhSzgMtt1fZQoaAZHQGDV/8/D+BJoB03oA2gIR0CX1Vakyk9EdX2UKGgGR0BtgjsWweNlaAdNowJoCEdAl9e6nm7rcHV9lChoBkdAceZl/pdKNGgHTXoBaAhHQJfcwgaFVT91fZQoaAZHQGIA0s4DLbJoB03oA2gIR0CX5wcJ+lTFdX2UKGgGR0BvV59NN8E3aAdNxgJoCEdAl+gaYmb9ZXV9lChoBkdAcAFbdadMCmgHTVoBaAhHQJfqR+PRzBB1fZQoaAZHQFnhT4+KTB9oB03oA2gIR0CX6y5avA45dX2UKGgGR0BmnuYOUdJbaAdN6ANoCEdAl+z+bZvkzXV9lChoBkdAbI77v5P/JmgHTdcCaAhHQJfuIL2HtWx1fZQoaAZHQG8dfdIoVmBoB02BAmgIR0CX8DjynUDudX2UKGgGR0BrYa/O+qR2aAdNMgNoCEdAl/CYRVZLZnV9lChoBkdAcFZiz9jwx2gHTd4BaAhHQJf3dBSk0rN1fZQoaAZHQHCMM+7lJYloB02QAWgIR0CX+Ap6hQFcdX2UKGgGR0BNYe1Bt1p1aAdNJQFoCEdAl/y+6d1+zHV9lChoBkdAZCyD5CWu5mgHTegDaAhHQJf++aMJhOR1fZQoaAZHQG9SRcu8K5VoB00FA2gIR0CYBM8YyfthdX2UKGgGR0Bte737DVH4aAdNRwFoCEdAmAd/x2B8QnV9lChoBkdAb6hlV94NZ2gHTfEBaAhHQJgLs7+1jRV1fZQoaAZHQGrN2sq8UVVoB03JA2gIR0CYED7MgU1ydX2UKGgGR0Bji/EwWWQfaAdN6ANoCEdAmCFUGqxTsXV9lChoBkdAI4KAJ9iMHmgHTRsBaAhHQJgjyVyFPBV1fZQoaAZHQGLF8i4axX5oB03oA2gIR0CYKFIJ7b+MdX2UKGgGR0BntyRnvlU7aAdN6ANoCEdAmCoTz7MxGnV9lChoBkdAcCUUCaJAMWgHTbICaAhHQJgsJC6Ymb91fZQoaAZHQHI3am0mdAhoB039AWgIR0CYLHC/oJRgdX2UKGgGR0Bs3q8J2MbWaAdN7QJoCEdAmC65NbkfcXV9lChoBkdAcCxPlMh5gWgHTUgCaAhHQJgwJPpIMBp1fZQoaAZHQG5lSHdoFmpoB03dAmgIR0CYNEY/mknDdX2UKGgGR0BwXp5iVjZtaAdNGAFoCEdAmDWp7LMcInV9lChoBkdAcLzo4dZJTWgHTZ4BaAhHQJg2pcSoOx11fZQoaAZHQHEWbIgeRxNoB01MA2gIR0CYOClGgBcSdX2UKGgGR0BtBWecx0uEaAdNFwJoCEdAmDh1rM1TBXV9lChoBkdAcLSDneSB9WgHTXcBaAhHQJg5biT+vQp1fZQoaAZHQHFT5zo2XLNoB02FAmgIR0CYOX87p3X7dX2UKGgGR0BuMrMcIZ62aAdNXwJoCEdAmD7j90ihWnV9lChoBkdAcOeEmplz2mgHTb4DaAhHQJhCsM+eOGV1fZQoaAZHQHHjx51Ng0FoB01zAWgIR0CYR6YZEUj+dX2UKGgGR0BtnHLs8gZCaAdNXgFoCEdAmEwcMNMGo3V9lChoBkdAbSg1ivxH5WgHTUEBaAhHQJhTPL6k6911fZQoaAZHQG/bX18LKFJoB03gAWgIR0CYV4HJ9y93dX2UKGgGR0Bxh6cEvCdjaAdNUAFoCEdAmFeQQUYbbXV9lChoBkdAbH/GlyimEWgHTTcCaAhHQJhYN/BnBcl1fZQoaAZHQHGHob4rSVpoB038AmgIR0CYWfaLGaQWdX2UKGgGR0BwlEhnrY5DaAdNqANoCEdAmFs3EZR8+nV9lChoBkdAcBMETQE6k2gHTZoCaAhHQJhw223KB/Z1fZQoaAZHQGsF4vN/vv1oB02TAmgIR0CYcXunMt9QdX2UKGgGR0BxhQEW69TQaAdNHQNoCEdAmHHpHNHH3nV9lChoBkdAbFFP/JeVs2gHTXoBaAhHQJhyQV2zOX51fZQoaAZHQHCA8ynDR+loB02vA2gIR0CYcomfoRqXdX2UKGgGR0BwxtAY51eTaAdNkANoCEdAmHSi5VfeDXV9lChoBkdATEkXBP9DQmgHS/RoCEdAmHXgJC0F83V9lChoBkdAcI8eNDMNdGgHTQwDaAhHQJh1+ojv/ip1fZQoaAZHQGX4TSkTHsFoB03oA2gIR0CYeR5GSZBtdX2UKGgGR0BueSkKu0TlaAdNMAFoCEdAmHsulKsdUHV9lChoBkdAcPXqN6w+uGgHTWYDaAhHQJh8Q+nqFAV1fZQoaAZHQHCeRllK9PFoB010AWgIR0CYfFXGff4zdX2UKGgGR0BwYaTY/Vy4aAdN9QFoCEdAmH/KrR0EHXV9lChoBkdAFJ7OE/Spi2gHS/FoCEdAmIP/grH2iHV9lChoBkdAcd/jdYW+G2gHTWYBaAhHQJiHPpr1uix1fZQoaAZHQG/C+eFtbcJoB01aAWgIR0CYiLcUdq+KdX2UKGgGR0BwrfENvwVkaAdNvwFoCEdAmIqR9G7SRnV9lChoBkdAcXR2LYPGyWgHTUMCaAhHQJiMJK9PDYR1fZQoaAZHQHJ6cTN+so5oB03dAWgIR0CYjFWqLjxTdX2UKGgGR0Bw3567dznzaAdNTgFoCEdAmI2ZOvdM03V9lChoBkdAbTS3UhFEzGgHTdgBaAhHQJiPqkGiYb91fZQoaAZHQGY7F1jiGWVoB03oA2gIR0CYj9K28Zk1dX2UKGgGR0ByNKQr+YMOaAdNhwFoCEdAmJEG9Htnf3V9lChoBkdAcRuzXz19OWgHTVsBaAhHQJiRozWPLgZ1fZQoaAZHQG6qUNrj5sVoB010AmgIR0CYkymG/N7jdX2UKGgGR0BJulSsKb8WaAdL+WgIR0CYk8WPLgXNdX2UKGgGR0BEwQb+98JEaAdL4mgIR0CYlFFId2gWdX2UKGgGR0BwqLvttyggaAdNUwJoCEdAmJc5xWDHwXV9lChoBkdARdhxgiNbT2gHS+toCEdAmJnSM1jy4HV9lChoBkdAZPbzo2XLNmgHTegDaAhHQJibV6hQFcJ1fZQoaAZHQHDXlbqyGBZoB01lAWgIR0CYm8XCj1wpdX2UKGgGR0BObKZtvXK9aAdNEgFoCEdAmJ0Ml9jPOnV9lChoBkdAcGW9IPK+z2gHTWgBaAhHQJift/z8P4F1fZQoaAZHQG1e+Haews5oB02WAWgIR0CYn8Up/gBLdX2UKGgGR0BDMJ6Y3Ns4aAdNFQFoCEdAmJ/C/O+qR3V9lChoBkdAcQXqASWZ7WgHTeoCaAhHQJig1vitJWh1fZQoaAZHQHIoNrGipNtoB013AmgIR0CYo8yHEdeZdX2UKGgGR0BtJdUZNwiraAdNZgFoCEdAmKQWHLzPKXVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c618a91fd6669dbd3d78b9442dd6f317005c5d0289d266fd3ea8d4847dbc5d21
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0837a94fab4af582b37c21dbc1636e62e9d9398111f5f94cde895df801ec0a33
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 241.907037163029, "std_reward": 20.29517114255565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-29T06:55:20.078763"}
|