jfealko commited on
Commit
bbdb25b
1 Parent(s): 5c61d2a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-russian-colab-beam_search_test
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-russian-colab-beam_search_test
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7619
20
+ - Wer: 0.4680
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 64
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 800
48
+ - num_epochs: 100
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 10.0158 | 4.16 | 100 | 5.4134 | 1.0 |
56
+ | 4.0394 | 8.33 | 200 | 3.4304 | 1.0 |
57
+ | 3.2721 | 12.49 | 300 | 3.2273 | 1.0 |
58
+ | 3.1277 | 16.66 | 400 | 2.8023 | 0.9984 |
59
+ | 1.3791 | 20.82 | 500 | 0.9888 | 0.8546 |
60
+ | 0.3659 | 24.99 | 600 | 0.7602 | 0.6304 |
61
+ | 0.1858 | 29.16 | 700 | 0.7965 | 0.6156 |
62
+ | 0.1403 | 33.33 | 800 | 0.7998 | 0.5839 |
63
+ | 0.1173 | 37.49 | 900 | 0.8353 | 0.5941 |
64
+ | 0.0917 | 41.66 | 1000 | 0.8272 | 0.5522 |
65
+ | 0.0743 | 45.82 | 1100 | 0.8342 | 0.5471 |
66
+ | 0.063 | 49.99 | 1200 | 0.7988 | 0.5352 |
67
+ | 0.0528 | 54.16 | 1300 | 0.7740 | 0.5201 |
68
+ | 0.0456 | 58.33 | 1400 | 0.7636 | 0.5165 |
69
+ | 0.0389 | 62.49 | 1500 | 0.7922 | 0.5161 |
70
+ | 0.0329 | 66.66 | 1600 | 0.8035 | 0.5158 |
71
+ | 0.0283 | 70.82 | 1700 | 0.7873 | 0.4832 |
72
+ | 0.0255 | 74.99 | 1800 | 0.7853 | 0.4870 |
73
+ | 0.0236 | 79.16 | 1900 | 0.8236 | 0.5045 |
74
+ | 0.0202 | 83.33 | 2000 | 0.7661 | 0.4796 |
75
+ | 0.0165 | 87.49 | 2100 | 0.7584 | 0.4680 |
76
+ | 0.0156 | 91.66 | 2200 | 0.7685 | 0.4772 |
77
+ | 0.0149 | 95.82 | 2300 | 0.7519 | 0.4696 |
78
+ | 0.0126 | 99.99 | 2400 | 0.7619 | 0.4680 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.11.3
84
+ - Pytorch 1.10.0+cu111
85
+ - Datasets 1.18.3
86
+ - Tokenizers 0.10.3