Guo
commited on
Commit
•
e815555
1
Parent(s):
90dabef
debug
Browse files- gate.py +100 -0
- modeling_jetmoe.py +5 -5
- moe.py +277 -0
gate.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class top_k_gating(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
input_size,
|
9 |
+
num_experts,
|
10 |
+
top_k,
|
11 |
+
):
|
12 |
+
"""
|
13 |
+
Initialize the top-k gating mechanism.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
input_size (int): Size of the input.
|
17 |
+
num_experts (int): Number of experts.
|
18 |
+
top_k (int): Number of top experts to select.
|
19 |
+
acc_aux_loss (bool): Whether to accumulate auxiliary loss statistics.
|
20 |
+
dropout (float): Dropout rate for gating network.
|
21 |
+
hidden_size (int): Hidden size of the gating network.
|
22 |
+
sample_topk (int): Number of top-k experts to sample during training.
|
23 |
+
aux_loss (str): Type of auxiliary loss ('mi' or 'switch').
|
24 |
+
gate_type (str): Type of gating mechanism ('mlp', 'linear', or 'gmm').
|
25 |
+
"""
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
self.num_experts = num_experts
|
29 |
+
self.input_size = input_size
|
30 |
+
assert top_k <= num_experts
|
31 |
+
self.top_k = top_k
|
32 |
+
|
33 |
+
self.layer = nn.Linear(input_size, num_experts, bias=False)
|
34 |
+
|
35 |
+
def extra_repr(self):
|
36 |
+
"""
|
37 |
+
Return extra representation string for the module.
|
38 |
+
"""
|
39 |
+
return 'k={}, num_experts={}'.format(
|
40 |
+
self.top_k, self.num_experts)
|
41 |
+
|
42 |
+
def compute_aux_loss(self, probs, logits, gates):
|
43 |
+
"""
|
44 |
+
Calculate and return the auxiliary loss based on the accumulated statistics.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
eps (float): Small epsilon value for numerical stability.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
torch.Tensor: The calculated auxiliary loss.
|
51 |
+
"""
|
52 |
+
count = logits.size(0)
|
53 |
+
probs = probs.sum(0)
|
54 |
+
freq = (gates > 0).float().sum(0)
|
55 |
+
lsesq = (torch.log(torch.exp(logits).sum(dim=-1)) ** 2).sum()
|
56 |
+
|
57 |
+
switchloss = self.num_experts * (
|
58 |
+
F.normalize(probs, p=1, dim=0) *
|
59 |
+
F.normalize(freq, p=1, dim=0)
|
60 |
+
).sum()
|
61 |
+
zloss = lsesq / count
|
62 |
+
loss = switchloss + 0.1 * zloss
|
63 |
+
|
64 |
+
return loss
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
"""
|
68 |
+
Compute the top-k gating for the input.
|
69 |
+
|
70 |
+
See paper: https://arxiv.org/abs/1701.06538.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
x (torch.Tensor): Input tensor with shape [batch_size, input_size].
|
74 |
+
skip_mask (torch.Tensor): Skip mask tensor (binary) with the same shape as `x`.
|
75 |
+
x: input Tensor with shape [batch_size, input_size]
|
76 |
+
train: a boolean - we only add noise at training time.
|
77 |
+
noise_epsilon: a float
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
torch.Tensor: Top-k indices.
|
81 |
+
torch.Tensor: Top-k gating values.
|
82 |
+
torch.Tensor: Probability values for each expert.
|
83 |
+
gates: a Tensor with shape [batch_size, num_experts]
|
84 |
+
load: a Tensor with shape [num_experts]
|
85 |
+
"""
|
86 |
+
|
87 |
+
logits = self.layer(x).float()
|
88 |
+
top_k_logits, top_k_indices = logits.topk(self.top_k, dim=1)
|
89 |
+
top_k_gates = torch.softmax(top_k_logits, dim=1).type_as(x)
|
90 |
+
|
91 |
+
if self.training:
|
92 |
+
probs = torch.softmax(logits, dim=1)
|
93 |
+
zeros = torch.zeros_like(probs)
|
94 |
+
zeros = zeros.to(top_k_gates.dtype) # Convert zeros to match top_k_gates dtype
|
95 |
+
gates = zeros.scatter(1, top_k_indices, top_k_gates)
|
96 |
+
self.loss = self.compute_aux_loss(probs, logits, gates)
|
97 |
+
else:
|
98 |
+
self.loss = 0
|
99 |
+
|
100 |
+
return top_k_indices, top_k_gates
|
modeling_jetmoe.py
CHANGED
@@ -9,7 +9,7 @@ from torch import nn
|
|
9 |
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
10 |
from torch.nn import functional as F
|
11 |
|
12 |
-
import megablocks
|
13 |
from transformers.modeling_outputs import (
|
14 |
BaseModelOutputWithPast,
|
15 |
CausalLMOutputWithPast,
|
@@ -28,7 +28,7 @@ from transformers.utils import (
|
|
28 |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
29 |
from transformers.cache_utils import Cache, DynamicCache
|
30 |
from .configuration_jetmoe import JetMoEConfig
|
31 |
-
from
|
32 |
|
33 |
if is_flash_attn_2_available():
|
34 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
@@ -701,9 +701,9 @@ class JetMoEBlock(nn.Module):
|
|
701 |
self.self_attention = JETMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
702 |
self.post_attention_layernorm = JetMoERMSNorm(config.hidden_size)
|
703 |
|
704 |
-
moe_args = megablocks.layers.arguments.from_megatron(config)
|
705 |
-
moe_args.activation_fn = F.silu
|
706 |
-
moe_args.return_bias = False
|
707 |
# self.mlp = megablocks.layers.dmoe.dMoE(moe_args)
|
708 |
self.mlp = moe.MoE(
|
709 |
input_size=config.hidden_size,
|
|
|
9 |
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
10 |
from torch.nn import functional as F
|
11 |
|
12 |
+
#import megablocks
|
13 |
from transformers.modeling_outputs import (
|
14 |
BaseModelOutputWithPast,
|
15 |
CausalLMOutputWithPast,
|
|
|
28 |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
29 |
from transformers.cache_utils import Cache, DynamicCache
|
30 |
from .configuration_jetmoe import JetMoEConfig
|
31 |
+
from . import moe
|
32 |
|
33 |
if is_flash_attn_2_available():
|
34 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
|
701 |
self.self_attention = JETMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
702 |
self.post_attention_layernorm = JetMoERMSNorm(config.hidden_size)
|
703 |
|
704 |
+
# moe_args = megablocks.layers.arguments.from_megatron(config)
|
705 |
+
# moe_args.activation_fn = F.silu
|
706 |
+
# moe_args.return_bias = False
|
707 |
# self.mlp = megablocks.layers.dmoe.dMoE(moe_args)
|
708 |
self.mlp = moe.MoE(
|
709 |
input_size=config.hidden_size,
|
moe.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
import scattermoe
|
9 |
+
from .gate import top_k_gating
|
10 |
+
|
11 |
+
|
12 |
+
class MoE(nn.Module):
|
13 |
+
"""
|
14 |
+
A Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts.
|
15 |
+
|
16 |
+
|
17 |
+
Args:
|
18 |
+
input_size: integer - size of the input
|
19 |
+
head_size: integer - size of the expert's hidden layer
|
20 |
+
num_experts: an integer - number of experts
|
21 |
+
top_k: an integer - how many experts to use for each batch element
|
22 |
+
bias: a boolean - whether to include bias in linear layers
|
23 |
+
activation: an activation function to apply to expert's outputs
|
24 |
+
acc_aux_loss: a boolean - whether to accumulate auxiliary loss
|
25 |
+
hidden_size: an integer - hidden size of the experts
|
26 |
+
gating_dropout: a float - dropout rate for gating network
|
27 |
+
sample_topk: an integer - how many experts to sample during training
|
28 |
+
gating_size: an integer - size of the gating network
|
29 |
+
aux_loss: a string - type of auxiliary loss ('mi' or 'sparse')
|
30 |
+
gate_type: a string - type of gating mechanism ('mlp' or 'topk')
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
input_size,
|
36 |
+
hidden_size,
|
37 |
+
num_experts,
|
38 |
+
top_k,
|
39 |
+
bias=True,
|
40 |
+
activation=None,
|
41 |
+
glu=True,
|
42 |
+
):
|
43 |
+
super(MoE, self).__init__()
|
44 |
+
|
45 |
+
self.num_experts = num_experts
|
46 |
+
self.input_size = input_size
|
47 |
+
self.glu = glu
|
48 |
+
if bias:
|
49 |
+
self.bias = torch.nn.Parameter(torch.empty(input_size))
|
50 |
+
torch.nn.init.zeros_(self.bias)
|
51 |
+
else:
|
52 |
+
self.bias = None
|
53 |
+
self.input_linear = scattermoe.parallel_experts.ParallelExperts(num_experts, input_size, hidden_size * 2 if glu else hidden_size)
|
54 |
+
self.output_linear = scattermoe.parallel_experts.ParallelExperts(num_experts, hidden_size, input_size)
|
55 |
+
self.top_k = min(top_k, self.num_experts)
|
56 |
+
self.activation = activation
|
57 |
+
|
58 |
+
self.router = top_k_gating(
|
59 |
+
input_size=input_size,
|
60 |
+
num_experts=num_experts,
|
61 |
+
top_k=top_k,
|
62 |
+
)
|
63 |
+
|
64 |
+
def extra_repr(self):
|
65 |
+
return 'k={}, e={}'.format(
|
66 |
+
self.top_k, self.num_experts)
|
67 |
+
|
68 |
+
def get_aux_loss_and_clear(self):
|
69 |
+
"""
|
70 |
+
Get the accumulated auxiliary loss and clear it.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
float: Accumulated auxiliary loss.
|
74 |
+
"""
|
75 |
+
|
76 |
+
return self.gate.get_aux_loss_and_clear()
|
77 |
+
|
78 |
+
def compute_gate(self, x):
|
79 |
+
top_k_indices, self.top_k_gates = self.router(x)
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
self.sorted_expert_idxs, self.sorted_scattered_idxs = scattermoe.kernels.ops.flatten_and_sort(top_k_indices)
|
83 |
+
self.padded_block_idxs, self.expert_offsets = scattermoe.kernels.ops.padded_block_indices(self.sorted_expert_idxs, self.num_experts)
|
84 |
+
|
85 |
+
return self.router.loss
|
86 |
+
|
87 |
+
def batch_forward(self, x):
|
88 |
+
"""
|
89 |
+
Forward pass of the mixture of experts layer.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
x (Tensor): Input tensor.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
Tensor: Output tensor.
|
96 |
+
"""
|
97 |
+
bsz, length, emb_size = x.size()
|
98 |
+
x = x.reshape(-1, emb_size)
|
99 |
+
|
100 |
+
loss = self.compute_gate(x)
|
101 |
+
|
102 |
+
h = self.input_linear(
|
103 |
+
x, self.top_k,
|
104 |
+
self.sorted_expert_idxs, self.sorted_scattered_idxs,
|
105 |
+
self.padded_block_idxs, self.expert_offsets,
|
106 |
+
grouped_out=True
|
107 |
+
)
|
108 |
+
|
109 |
+
if self.glu:
|
110 |
+
h, g = h.chunk(2, dim=-1)
|
111 |
+
h = self.activation(h) * g
|
112 |
+
else:
|
113 |
+
h = self.activation(h)
|
114 |
+
|
115 |
+
y = self.output_linear(
|
116 |
+
h, 1,
|
117 |
+
self.sorted_expert_idxs, self.sorted_scattered_idxs,
|
118 |
+
self.padded_block_idxs, self.expert_offsets,
|
119 |
+
grouped_in=True,
|
120 |
+
gates=self.top_k_gates,
|
121 |
+
)
|
122 |
+
|
123 |
+
y = y.view(bsz, length, self.input_size)
|
124 |
+
if self.bias is not None:
|
125 |
+
y = y + self.bias
|
126 |
+
return y, loss
|
127 |
+
|
128 |
+
def single_forward(self, x):
|
129 |
+
bsz, length, emb_size = x.size()
|
130 |
+
|
131 |
+
x = x.reshape(1, self.input_size)
|
132 |
+
top_k_indices, top_k_gates = self.router(x)
|
133 |
+
loss = self.router.loss
|
134 |
+
|
135 |
+
y_list = []
|
136 |
+
for i in range(self.top_k):
|
137 |
+
expert_idx = top_k_indices[0,i]
|
138 |
+
|
139 |
+
h = F.linear(x, self.input_linear.weight[expert_idx])
|
140 |
+
if self.glu:
|
141 |
+
h, g = h.chunk(2, dim=-1)
|
142 |
+
h = self.activation(h) * g
|
143 |
+
else:
|
144 |
+
h = self.activation(h)
|
145 |
+
y = F.linear(h, self.output_linear.weight[expert_idx]) * top_k_gates[0,i]
|
146 |
+
|
147 |
+
y_list.append(y)
|
148 |
+
|
149 |
+
y = sum(y_list)
|
150 |
+
y = y.view(bsz, length, self.input_size)
|
151 |
+
if self.bias is not None:
|
152 |
+
y = y + self.bias
|
153 |
+
return y, loss
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
"""
|
157 |
+
Forward pass of the mixture of experts layer.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
x (Tensor): Input tensor.
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
Tensor: Output tensor.
|
164 |
+
"""
|
165 |
+
bsz, length, emb_size = x.size()
|
166 |
+
if bsz * length ==1:
|
167 |
+
return self.single_forward(x)
|
168 |
+
else:
|
169 |
+
return self.batch_forward(x)
|
170 |
+
|
171 |
+
def batch_map(self, x):
|
172 |
+
"""
|
173 |
+
Map input through the mixture of experts layer.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
x (Tensor): Input tensor.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
Tensor: Output tensor.
|
180 |
+
"""
|
181 |
+
bsz, length, emb_size = x.size()
|
182 |
+
x = x.reshape(-1, emb_size)
|
183 |
+
loss = self.compute_gate(x)
|
184 |
+
|
185 |
+
y = self.input_linear(
|
186 |
+
x, self.top_k,
|
187 |
+
self.sorted_expert_idxs, self.sorted_scattered_idxs,
|
188 |
+
self.padded_block_idxs, self.expert_offsets,
|
189 |
+
)
|
190 |
+
y = y.view(bsz, length, self.top_k, -1)
|
191 |
+
return y, loss
|
192 |
+
|
193 |
+
def single_map(self, x):
|
194 |
+
bsz, length, emb_size = x.size()
|
195 |
+
|
196 |
+
x = x.reshape(1, self.input_size)
|
197 |
+
self.top_k_indices, self.top_k_gates = self.router(x)
|
198 |
+
loss = self.router.loss
|
199 |
+
|
200 |
+
y_list = []
|
201 |
+
for i in range(self.top_k):
|
202 |
+
expert_idx = self.top_k_indices[0,i]
|
203 |
+
y = F.linear(x, self.input_linear.weight[expert_idx])
|
204 |
+
y_list.append(y)
|
205 |
+
y = torch.cat(y_list, dim=0)
|
206 |
+
y = y.view(bsz, length, self.top_k, -1)
|
207 |
+
return y, loss
|
208 |
+
|
209 |
+
def map(self, x):
|
210 |
+
"""
|
211 |
+
Map input through the mixture of experts layer.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
x (Tensor): Input tensor.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
Tensor: Output tensor.
|
218 |
+
"""
|
219 |
+
bsz, length, emb_size = x.size()
|
220 |
+
if bsz * length ==1:
|
221 |
+
return self.single_map(x)
|
222 |
+
else:
|
223 |
+
return self.batch_map(x)
|
224 |
+
|
225 |
+
def batch_reduce(self, x):
|
226 |
+
"""
|
227 |
+
Reduce the mapped output.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
x (Tensor): Mapped output tensor.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
Tensor: Reduced output tensor.
|
234 |
+
"""
|
235 |
+
|
236 |
+
bsz, length, k, emb_size = x.size()
|
237 |
+
assert k == self.top_k
|
238 |
+
x = x.reshape(-1, emb_size)
|
239 |
+
|
240 |
+
y = self.output_linear(
|
241 |
+
x, 1,
|
242 |
+
self.sorted_expert_idxs, self.sorted_scattered_idxs,
|
243 |
+
self.padded_block_idxs, self.expert_offsets,
|
244 |
+
gates=self.top_k_gates,
|
245 |
+
)
|
246 |
+
y = y.view(bsz, length, self.input_size)
|
247 |
+
return y
|
248 |
+
|
249 |
+
def single_reduce(self, x):
|
250 |
+
bsz, length, k, emb_size = x.size()
|
251 |
+
|
252 |
+
x = x.reshape(k, emb_size)
|
253 |
+
|
254 |
+
y_list = []
|
255 |
+
for i in range(self.top_k):
|
256 |
+
expert_idx = self.top_k_indices[0,i]
|
257 |
+
y = F.linear(x[i], self.output_linear.weight[expert_idx]) * self.top_k_gates[0,i]
|
258 |
+
y_list.append(y)
|
259 |
+
y = sum(y_list)
|
260 |
+
y = y.view(bsz, length, self.input_size)
|
261 |
+
return y
|
262 |
+
|
263 |
+
def reduce(self, x):
|
264 |
+
"""
|
265 |
+
Reduce the mapped output.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
x (Tensor): Mapped output tensor.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
Tensor: Reduced output tensor.
|
272 |
+
"""
|
273 |
+
bsz, length, k, emb_size = x.size()
|
274 |
+
if bsz * length ==1:
|
275 |
+
return self.single_reduce(x)
|
276 |
+
else:
|
277 |
+
return self.batch_reduce(x)
|