twitter-llama / handler.py
jed-tiotuico's picture
debugging
bb37ad0
raw
history blame
1.13 kB
from typing import Dict, Any, List
import random
from unsloth import FastLanguageModel
import torch
#
# max_seq_length = 2048
# dtype = None
# load_in_4bit = True
class EndpointHandler:
def __init__(self, path=""):
self.model, self.tokenizer = FastLanguageModel.from_pretrained(
model_name = path, # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit
)
# FastLanguageModel.for_inference(self.model) # Enable native 2x faster inference
pass
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
# inputs = self.tokenizer(data["inputs"], return_tensors = "pt").to("cuda")
#
# outputs = self.model.generate(**inputs, max_new_tokens = 64)
# results = self.tokenizer.batch_decode(outputs)
# return [{"generated": results[0]}]
result = []
# generate random float
random_float = random.random()
result.append({"label": "hello, world", "score": 0.99})
return {"predictions": result}